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Abstract—Conjugate point type second order optimality
conditions for extremals associated to smooth Hamiltonians are
evaluated by means of a new algorithm. Two kinds of standard
control problems fit in this setting: the so-called regular ones,
and the minimum time singular single-input affine systems.
Conjugate point theory is recalled in these two cases, and two
applications are presented: the minimum time control of the
Kepler and Euler equations.

I. INTRODUCTION
We consider a smooth Hamiltonian equation

ż = −→
H (z) (1)

on the cotangent bundle of a smooth manifold M . Such an
equation arises in the optimal control of systems with smooth
control. Indeed, extremal trajectories are parameterized by
Pontryagin maximum principle and satisify the standard
Hamiltonian equation. In the two cases of regular systems,
and singular single-input affine minimum time systems,
the control is smooth and a Hamiltonian equation of the
form (1) is derived. Moreover, second order conditions for
(local) optimality of a given extremal, z, can be checked by
computing a set of solutions to the variational system along
the extremal:

δż = d
−→
H (z(t))δz. (2)

System (2) is called the Jacobi equation. This kind of second
order conditions are known as conjugate point conditions [1],
[2], [3]. An implementation of the relevant computations,
including solving (1) and (2) is provided by the Matlab
package cotcot [4]. More precisely, on the basis of a user-
provided Hamiltonian, the second members of (1) and (2)
are evaluated by automatic differentiation [5]. The numerical
integration of the differential equations and the solution of
the associated shooting problem are computed by standard
Netlib codes interfaced with Matlab. We propose two ap-
plications of the algorithm in spaceflight dynamics: first to
orbit transfer, then to attitude control.
To this end, we first recall in §II and §III the conjugate

point theory, respectively for regular control problems and
minimum time singular single-input affine systems. Then, the
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minimum time control of the Kepler equation is presented in
§IV. The aim is to compute orbit transfers around the Earth
and to check optimality of the corresponding extremals. This
is done in the regular multi-input case as well as in the singu-
lar single-input exceptional case. The second application is
the attitude control of a spacecraft. A preliminary study of the
Euler equations is achieved. The hyperbolic and exceptional
singular cases of the single-input system are finally analyzed
in §V. For a more detailed presentation of the topic, we refer
readers to [6], [7].

II. REGULAR CONTROL SYSTEMS
Consider the control of the system

ẋ = f(x, u), x(0) = x0 (3)

where x belongs to a smooth manifold M identified with
Rn, and where the cost to minimize is the functional

C(x, u) =
∫ T

0
f0(x, u)dt.

The right hand side f : Rn ×Rn → Rn is smooth and u
takes values in Rm. Since the control domain is unbounded,
every optimal control u on [0, T ] is a singularity of the
endpoint mapping Ex0,t : L∞m ([0, t]) → Rn for 0 < t ≤ T
where Ex0,t(u) = x(t, x0, u) is the solution of (3): the
Fréchet derivative at u of the mapping is not surjective
(its image has codimension at least one; see assumption
(A2) hereafter). The resulting trajectory is the projection
of an extremal (x, p0, p, u), p0 non-positive, solution of the
maximum principle,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x

and
∂H

∂u
= 0

where H = p0f0(x, u) + 〈p, f(x, u)〉 is the standard Hamil-
tonian, constant along the extremal, zero if the final time
is free. The Hamiltonian is homogeneous in (p0, p) and we
have two cases: the normal case where p0 is not zero and
normalized to p0 = −1, and the exceptional case otherwise,
p0 = 0. Without losing any generality, we may assume that
the trajectory is one to one on [0, T ]. We make the strong
Legendre assumption,
(A1) The quadratic form ∂2H/∂u2 is negative definite along

the reference extremal.
Therefore, using the implicit function theorem, the extremal
control can be locally defined as a smooth function ur of


