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The safety of the flights, and in particular conflict resolution for separation assurance,
is one of the main tasks of Air Traffic Control. Conflict resolution requires decision making
in the face of the considerable levels of uncertainty inherent in the motion of aircraft.
We present a Monte Carlo framework for conflict resolution which allows one to take into
account such levels of uncertainty through the use of a stochastic simulator. A simulation
example inspired by current air traffic control practice illustrates the proposed conflict
resolution strategy.

I. Introduction

In the current organization of the Air Traffic Management (ATM) system the centralized Air Traffic
Control (ATC) is in complete control of air traffic and ultimately responsible for safety. Before take off,
aircraft file flight plans which cover the entire flight. During the flight, ATC sends additional instructions to
them, depending on the actual traffic, to improve traffic flow and avoid dangerous encounters. The primary
concern of ATC is to maintain safe separation between the aircraft. The level of accepted minimum safe
separation may depend on the density of air traffic and the region of the airspace. For example, a largely
accepted value for horizontal minimum safe separation between two aircraft at the same altitude is 5 nmi in
general en-route airspace; this is reduced to 3 nmi in approach sectors for aircraft landing and departing. A
conflict is defined as a situation of loss of minimum safe separation between two aircraft. If safety is not at
stake, ATC also tries to fulfill the (possibly conflicting) requests of aircraft and airlines; for example, desired
paths to avoid turbulence, or desired time of arrivals to meet schedule. To improve the performance of ATC,
mainly in anticipation of increasing levels of air traffic, research effort has been devoted over the last decade
on creating tools to assist ATC with conflict detection and resolution tasks! .

Uncertainty is introduced in air traffic by the action of wind, incomplete knowledge of the physical
coefficients of the aircraft and unavoidable imprecision in the execution of ATC instructions. To perform
conflict detection one has to evaluate the possibility of future conflicts given the current state of the airspace
and taking into account uncertainty in the future position of aircraft. For this task, one needs a model to
predict the future. In a probabilistic setting, the model could be either an empirical distribution of future
aircraft positions? or a dynamical model, such as a stochastic differential equation®® , that describes the
aircraft motion and defines implicitly a distribution for future aircraft positions. On the basis of the prediction
model one can evaluate metrics related to safety. An example of such a metric is conflict probability over a
certain time horizon. Several methods have been developed to estimate different metrics related to safety for
a number of prediction models? ® . Among other methods, Monte Carlo methods have the main advantage of
allowing flexibility in the complexity of the prediction model since the model is used only as a simulator and,
in principle, it is not involved in explicit calculations. In all methods a trade off exists between computational
effort (simulation time in the case of Monte Carlo methods) and the accuracy of the model. Techniques to
accelerate Monte Carlo methods especially for rare event computations are under development” .
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For conflict resolution, the objective is to provide suitable maneuvers to avoid a predicted conflict.
A number of conflict resolution algorithms have been proposed in the deterministic setting® 1 . In the
stochastic setting, the research effort has concentrated mainly on conflict detection, and only a few simple
resolution strategies have been proposed®® . The main reason for this is the complexity of stochastic
prediction models which makes the quantification of the effects of possible control actions intractable.

In this paper we present a Monte Carlo Markov Chain (MCMC) framework!! for conflict resolution
in a stochastic setting. The aim of the proposed approach is to extend the advantages of Monte Carlo
techniques, in terms of flexibility and complexity of the problems that can be tackled, to conflict resolution.
The approach is motivated from Bayesian statistics!? 13 . We consider an expected value resolution criterion
that takes into account separation and other factors (e.g. aircraft requests). Then, the MCMC optimization
procedure of'? is employed to estimate the resolution maneuver that optimizes the expected value criterion.
The proposed approach is illustrated in simulation, on some realistic benchmark problems, inspired by
current ATC practice. The benchmarks were implemented in an air traffic simulator developed in previous
work!4 16 | The reader is referred also to the extended version of the present paper!” .

This paper is organized as follows. Section II presents the formulation of conflict resolution as an op-
timization problem. The Monte Carlo optimization procedure that we adopt is presented in Section III.
Section IV illustrate a simulation example. Conclusions and future objectives are discussed in Section V.

II. Conflict resolution with an expected value criterion

We formulate conflict resolution as a constrained optimization problem. Given a set of aircraft involved in
a conflict, the conflict resolution maneuver is determined by a parameter w which defines the nominal paths
of the aircraft. From the point of view of the ATC, the execution of the maneuver is affected by uncertainty,
due to wind, imprecise knowledge of aircraft parameters (e.g. mass) and Flight Management System (FMS)
settings, etc. Therefore, the sequence of actual positions of the aircraft (for example, the sequence of
positions observed by ATC every 6 seconds, which is a typical time interval between two successive radar
sweeps) during the resolution maneuver is, a-priori of its execution, a random variable, denoted by X. A
conflict is defined as the event that two aircraft get too close during the execution of the maneuver. The goal
is to select w to maximize the expected value of some measure of performance associated to the execution
of the resolution maneuver, while ensuring a small probability of conflict. In this section we introduce the
formulation of this problem in a general framework.

Let X be a random variable whose distribution depends on some parameter w. The distribution of X
is denoted by p,(z) with © € X. The set of all possible values of w is denoted by €. We assume that a
constraint on the random variable X is given in terms of a feasible set X¢ C X. We say that a realization
x, of random variable X, violates the constraint if x ¢ X¢. The probability of satisfying the constraint for a
given w is denoted by P(w)

Pw = [ el

The probability of violating the constraint is denoted by P(w) =1 — P(w).

For a realization x € X¢ we assume that we are given some definition of performance of x. In general
performance can depend also on the value of w, therefore performance is measured by a function perf(-,-) :
Q x X¢ — [0,1]. The expected performance for a given w € € is denoted by PERF(w), where

PERF(w) = / perf(w, 2)p,, (z)dx .
reXyg
Ideally one would like to select w to maximize the performance, subject to a bound on the probability of
constraint satisfaction. Given a bound P € [0, 1], this corresponds to solving the constrained optimization
problem

PERFyax|p = sup PERF(w) (1)
w€enN
subject to P(w) < P. (2)

Clearly, for feasibility we must assume that there exists w € € such that P(w) < P, or, equivalently,

Poin — inf P(w) < P.
wenN
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The optimization problem (1)-(2) is generally difficult to solve, or even to approximate by randomized
methods. Here we approximate this problem by an optimization problem with penalty terms. We show that
with a proper choice of the penalty term we can enforce the desired maximum bound on the probability of
violating the constraint, provided that such a bound is feasible, at the price of sub-optimality in the resulting
expected performance.

We introduce a function u(w, z) defined on the entire X by

perf(w,z) + A = € Xg
u(w,z) =
1 T ¢ Xf,

with A > 1. The parameter A represents a reward for constraint satisfaction. For a given w € €, the
expected value of u(w,x) is given by

U(w) = /ex u(w, z)py, (z)dz.

Instead of the constrained optimization problem (1)—(2) we solve the unconstrained optimization problem:

Umax = sup U(w). (3)
wenN
Assume the supremum is attained and let @ denote the optimum solution, i.e. Umax = U(@). The
following proposition establishes bounds on the probability of violating the constraints and the level of
sub-optimality of PERF(w) over PERFyax |5-

Proposition I1.117 The mazimizer, &, of U(w) satisfies

P(U_)) S Pmin + %(1 - 15min) (4)
PERF(0) > PERFupaxs — (A — 1)(P — Prin) . (5)

Proposition II.1 suggests a method for choosing A to ensure that the solution @ of the optimization
problem will satisfy P(w) < P. In particular it suffices to know P(w) for some w € @ with P(w) < P to
obtain a bound. If there exists w € € for which P = P(w) < P is known, then any

A > }71?
P_-P

ensures that P(w) < P. If we know that there exists a parameter w € € for which the constraints are
satisfied almost surely, a tighter (and potentially more useful) bound can be obtained. If there exists w €

such that P(w) = 0, then any
1
A> = 6
> 2 (6)
ensures that P(@) < P. Clearly to minimize the gap between the optimal performance and the performance

of & we need to select A as small as possible. Therefore the optimal choices of A that ensure the bounds on

constraint satisfaction and minimize the sub-optimality of the solution are A = 1-P and A = % respectively.

el
g

III. Monte Carlo Optimization

In this section we describe a simulation-based procedure, to find approximate optimizers of U(w). The
only requirement for applicability of the procedure is to be able to obtain realizations of the random variable
X with distribution p,,(z) and to evaluate u(w, x) point-wise. This optimization procedure is in fact a general
procedure for the optimization of expected value criteria. It has been originally proposed in the Bayesian
statistics literature!? .

The optimization strategy relies on extractions of a random variable 2 whose distribution has modes
which coincide with the optimizers of U(w). These extractions are obtained through Monte Carlo Markov
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Chain (MCMC) simulation!! . The problem of optimizing the expected criterion is then reformulated as the
problem of estimating the optimal points from extractions concentrated around them. In the optimization
procedure, there exists a tunable parameter that governs the trade-off between estimation accuracy of the
optimizer and computational effort. In particular, the distribution of  is proportional to U(w)” where J is
a positive integer which allows the user to increase the “peakedness” of the distribution and concentrate the
extractions around the modes at the price of an increased computational load. If the tunable parameter J
is increased during the optimization procedure, this approach can be seen as the counterpart of Simulated
Annealing for a stochastic setting. Simulated Annealing is a randomized optimization strategy developed
to find tractable approximate solutions to complex deterministic combinatorial optimization problems!® . A
formal parallel between these two strategies has been derived in Ref. 13 .

The MCMC optimization procedure can be described as follows. Consider a stochastic model formed by
a random variable 2, whose distribution has not been defined yet, and J conditionally independent replicas
of random variable X with distribution po(x). Let us denote by h(w,x1,x2,...,2) the joint distribution of
(Q, X1, X2, X3,...,X 7). It is straightforward to see that if

J
h(w, @1, 2, 5) o« [ [ ulw, z5)po(z;) (7)

j=1

then the marginal distribution of 2, also denoted by h(w) for simplicity, satisfies

) o | [ute,o(o)de] vy ®)

This means that if we can extract realizations of (2, X1, Xs, X3, ..., X ) then the extracted Q’s will be con-
centrated around the optimal points of U(Q) for a sufficiently high J. These extractions can be used to find an
approximate solution to the optimization of U(w). Realizations of the random variables

(Q, X1, X2, X3,...,Xy), with the desired joint probability density given by (7), can be obtained through
Monte Carlo Markov Chain simulation. The algorithm is presented below. In the algorithm, g(w) is known
as the instrumental (or proposal) distribution and is freely chosen by the user; the only requirement is that
g(w) covers the support of h(w).

Algorithm 1 (MCMC Algorithm)

initialization:
Extract 2(0) ~ g(w)
Extract X;(0) ~ poy(z) j=1,...,J
Compute U, (0) = [T/, u(€(0), X;(0))
Set k=0

repeat
Extract Q ~ g(w)
Extract Xj ~pglx) j=1,...,J
Compute Uy = szl u(, X;)

— i Uy g(w(k))
Setp—mln{l,uJ(Jk)W}

Q, U] with probability p
Set [k +1), Us(k+1)] =
[w(k), us(k)] with probability 1 — p
Set k=k+1
until True

In the description of the algorithm, lower- and upper-case symbols denote respectively quantities that are
known at the iteration k£ and quantities that are extracted at the iteration k. Notice for example that
[w(k), us(k)] denotes the current state and that [Q2(k + 1), Us(k + 1)] denotes the subsequent state of
the chain. In the initialization step the state [©2(0),U;(0)] is always accepted. In subsequent steps the
new extraction [Q, U j] is accepted with probability p otherwise it is rejected and the previous state of the
Markov chain [w(k), us(k)] is maintained. Practically, the algorithm is executed until a certain number of
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extractions (say 1000) have been accepted. Because we are interested in the stationary distribution of the
Markov chain, the first few (say 10%) of the accepted states are discarded to allow the chain to reach its
stationary distribution (“burn in period”).

This algorithm is a formulation of the Metropolis-Hastings algorithm for a desired distribution given by
h(w, 21, x2,...,27) and proposal distribution given by

9(w) pr(xj)-

In this case, the acceptance probability for the standard Metropolis-Hastings algorithm is

W@, &1, %, . .., 35) 9W) [, polz))
hw, x1,22,. .., 27) 9(@) I, pu(@;)

By inserting (7) in the above expression one obtains p(w, u s, @, @s). Under minimal assumptions, the Markov
Chain generated by the Q(k) is uniformly ergodic with stationary distribution h(w) given by (8). Therefore,
after a burn in period, the extractions Q(k) accepted by the algorithm will concentrate around the modes
of h(w), which, by (8) coincide with the optimal points of U(w). Results that characterize the convergence
rate to the stationary distribution can be found, for example, in Ref. 11.

IV. Simulation Example

In earlier work we developed an air traffic simulator to simulate adequately the behavior of a set of aircraft
from the point of view of ATC'4716 | The simulator implements realistic models of current commercial aircraft
described in the Base of Aircraft Data (BADA)'Y . The simulator contains also realistic stochastic models of
the wind disturbance?® . The aircraft models contain continuous dynamics, arising from the physical motion
of the aircraft, discrete dynamics, arising from the logic embedded in the Flight Management System, and
stochastic dynamics, arising from the effect of the wind and incomplete knowledge of physical parameters
(for example, the aircraft mass, which depends on fuel, cargo and number of passengers). The simulator
has been coded in Java and can be used in different operation modes, either to generate accurate data for
validation of the performance of conflict detection and resolution algorithm, or to run faster simulations of
simplified models. The nominal path for each aircraft is entered in the simulator as a sequence of way-points.
The actual trajectories of the aircraft generated by the simulator are a perturbed version of the nominal
path that depends on the particular realizations of wind disturbances and uncertain parameters.

The air traffic simulator has been used to produce the example presented in this section. The full accurate
aircraft, FMS and wind models have been used both during the Monte Carlo optimization procedure and
to obtain Monte Carlo estimates of post-resolution conflict probabilities. The simulator was invoked from
Matlab on a Linux workstation with a Pentium 4 3GHz processor. Under these conditions the simulation of
the flight of two aircraft for 30 minutes, which is approximately the horizon considered in the example, took
0.2 seconds on the average. Notice that this simulation speed (5 simulations/sec) is quite low for a Monte
Carlo framework. This is mainly due to the fact that no attempt has been made to optimize the code at this
stage. For example, executing the Java simulator from a Matlab environment introduces unnecessary and
substantial computational overhead. The reader is requested to evaluate the computation times reported in
the following example keeping this fact in mind.

We consider the problem of sequencing two aircraft. This is a typical task of ATC in TMA where aircraft
descend from cruising altitude and need to be sequenced and separated by a certain time interval before
entering in the final Approach Sector. In Figure 1 several possible trajectory realizations of a descending air-
craft corresponding to the same nominal path are displayed. In this figure, the aircraft descends from FL350
to FL100. In addition to stochastic wind terms, uncertainty about the mass of the aircraft is introduced as
a uniform distribution between two extreme values. The figure suggests that the resulting uncertainty in the
position of aircraft is of the order of magnitude of some kilometers.

The conflict resolution problem is illustrated in Figure 2(a). The initial position of the first aircraft
(A1) is (—100000, 100000) (where coordinates are expressed in meters) and FL350. The path of this aircraft
is fixed: The aircraft proceeds to way-point (—90000,90000) where it will start a descent to FL150. The
trajectory of Al, while descending, is determined by an intermediate way-point in (0,0) and a final way-
point in (100000, 0), where the aircraft is assumed to exit the TMA and enter the approach sector. The
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Figure 1. Several trajectory realizations of aircraft descent

second aircraft (A2) is initially at (—100000, —100000) and FL350. This aircraft proceeds to way-point
(—90000, —90000) where it will start its descent to FL150. The intermediate way-point w = (w1, ws) must
be selected in the range wy ,ws € [—90000,90000]. The aircraft will then proceed to way-point (90000, 0)
and then to the exit way-point (100000, 0).

We assume that the objective is to obtain a time separation of 300 seconds between the arrivals of the two
aircraft at the exit way-point, (10000, 0). Performance in this sense is measured by perf = e~ (IT1—T2|=300)
where T} and T, are the arrival times of Al and A2 at the exit way-point and @ = 5-1073. The constraint
is that the trajectories of the two aircraft should not be conflicting. In our simulations we define a conflict
as the situation in which two aircraft have less than 5nmi of horizontal separation and less than 1000ft of
vertical separation®. We optimize initially with an upper bound on the probability of constraint violation
of P = 0.1. Tt is easy to see that there exists a maneuver in the set of optimization parameters that gives
negligible conflict probability. Therefore, based on inequality (6), we select A = 10 in the optimization
criterion.

The results of the optimization procedure are illustrated in Figures 2(b-d). Each figure shows the scatter
plot of the accepted parameters during MCMC simulation for different choices of J and search distribution
g. In all cases the first 10% of accepted parameters was discarded as a burn in period, to allow convergence
of the Markov chain to its stationary distribution.

Figure 2(b) illustrates the case J = 10. Regions characterized by a low density of accepted parameters
can be clearly seen in the figure. These are parameters which correspond to nominal paths with high
probability of conflict. The figure also shows distinct “clouds” of accepted maneuvers. They correspond
to different sequences of arrivals at the exit point: either Al arrives before A2 (top left and bottom right
clouds) or Al arrives after A2 (middle cloud). In this case the proposal distribution g was uniform over
the parameter space and the ratio of accepted/proposed states was 0.27. This means that approximately
1100 - 10/0.27 = 40740 simulations were needed to obtain 1000 accepted states. At the average simulation
speed of 5 simulations/second, the required computational time to obtain 1000 accepted states was then
approximately 2 hours. In this simulation we actually extracted 5100 states. Figure 2(b) displays the last
2000 extracted states.

Figure 2(c) illustrates the case J = 50. In this case the proposal distribution g was a sum of 2000

aIn the TMA of large airports horizontal minimal separation is sometimes reduced to 3nmi, but this fact is ignored here.
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Figure 2. Accepted states during MCMC simulation

Gaussian distributions N(u,0?I) with variance 02 = 10”m?. The means of Gaussian distributions were
2000 parameters randomly chosen from those accepted in the MCMC simulation for J = 10. The choice
of this proposal distribution gives clear computational advantages since less computational time is spent
searching over regions of non optimal parameters. In this case the ratio accepted/proposed states was 0.34.
This means that approximately 1100 - 50/0.34 = 161764 simulations were needed to obtain 1000 accepted
states. At an average of 5 simulations/second, the required computational time to obtain 1000 states was
approximately 9 hours.

Figure 2(d) illustrates the case J = 100 and a proposal distribution constructed as before from states
accepted for J = 50. Here the ratio accepted/proposed states was 0.3. This means that approximately
1100 - 100/0.3 = 366666 simulations were needed to obtain 1000 accepted states. At an average of 5 simu-
lations/second, the required computational time to obtain 1000 states was approximately 20 hours. Figure
2(d) indicates that a nearly optimal maneuver is wy = —40000 and ws = 40000. The probability of conflict
for this maneuver, estimated by 1000 Monte Carlo runs, was zero. The estimated expected time separation
between arrivals was 283 seconds.
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V. Conclusions

In this paper we illustrated our current approach to air traffic conflict resolution in a stochastic setting
based on the use of Monte Carlo methods. The main motivation for our approach is to enable the use
of realistic stochastic hybrid models of aircraft flight; Monte Carlo methods appear to be the only ones
that allow such models. We have formulated conflict resolution as the optimisation of an expected value
criterion with probabilistic constraints. Here, a penalty formulation of the problem has been considered
which guarantees constraint satisfaction but delivers a suboptimal solution.

Our current research is concerned with overcoming the sub optimality imposed by the need to provide
constraint satisfaction guarantees. A possible way is to use the Monte Carlo Markov Chain procedure
presented in Section II to obtain optimisation parameters that satisfy the constraint and then to optimise
over this set in a successive step. Formulation of the the conflict resolution procedure in the Sequential
Monte Carlo?! framework is also under investigation. Our current research is focused also on modelling and
implementation in the simulator of typical Air-Traffic Control situation with a realistic parameterisation of
control actions and control objectives.
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