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Summary. This paper presents a hierarchical approach to hybrid control systems
synthesis. It is set in a general behavioural framework and therefore allows a com-
bination of continuous and discrete layers in the resulting overall controller. Com-
pared to unstructured approaches, it drastically reduces computational complexity
and hence enlarges the class of continuous-discrete control problems that can be ad-
dressed using methods from hybrid systems theory. The potential of our approach
is demonstrated by applying it to a multiproduct batch control problem.

1 Introduction

In hybrid dynamical systems, discrete-event components (realised, e.g., by
finite automata) and continuous components (realised, e.g., by ordinary dif-
ferential equations) interact in a nontrivial way. The fundamental problems
in analysing and synthesing such systems stem from the nature of their state
sets. While the state space of a continuous system usually exhibits vector
space structure, and the state set of a discrete event system (DES) is often
finite, the state set of the overall system inherits none of theses amenities:
as a product of the constituting state sets, it is neither finite nor does it
exhibit vector space structure.4 Hence, neither methods from discrete event
systems theory, which rely on exploiting finiteness, nor concepts from con-
tinuous control theory carry over readily to hybrid problems. Nevertheless,
as inherently hybrid application problems are very common, hybrid control
systems have become an increasingly popular subject during the last decade

4 An obvious consequence from this structural fact is – and this links our contri-
bution to the theme of M. Zeitz’s birthday symposium – that hybrid systems are
nonlinear by nature.
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(e.g. [2, 1, 6]). A considerable part of hybrid systems research has gone into
investigating approximation-based approaches (e.g. [7, 5, 16, 9]). There, the
core idea is to approximate continuous dynamics by discrete event systems,
and hence to transform the hybrid control problem into a purely discrete one.
Of course, care has to be taken to guarantee that the resulting (discrete event)
control system enforces the specifications not only for the discrete approxi-
mation but also for the underlying hybrid system. In [10, 14], the authors of
this contribution developed an approximation-based synthesis approach which
is based on the notion of l-complete abstractions. Like other approximation-
based methods, our approach suffers from the “curse of complexity”: state
sets of approximating DESs may become very large, and, as the subsequent
control synthesis step involves forming the product of approximating DESs
and a realisation of the specifications, computational effort can become ex-
cessive even for seemingly “small” applications. Obviously, complexity also
represents a major problem in other control contexts, and it is common en-
gineering knowledge that suitable decomposition techniques form a necessary
ingredient for any systematic treatment of complex control problems. Hierar-
chical approaches are a particularly attractive way of problem decomposition
as they provide an extremely intuitive control architecture.

This contribution presents a hierarchical synthesis framework which is gen-
eral enough to encompass both continuous and discrete levels and is therefore
especially suited for hybrid control problems. It is based on two previous
(rather technical) conference papers [13, 12]. To keep exposition reasonably
straightforward, we focus on the case of two control layers. Unlike heuristic ap-
proaches, our synthesis framework guarantees that the control layers interact
“properly” and do indeed enforce the overall specifications for the consid-
ered plant model. Its elegance stems from the fact that the specifications for
the lower control level can be considered a suitable abstraction which may
be used as a basis for the synthesis of the high-level controller. Formulating
specifications for the lower control level may rely on engineering intuition. In
fact, our approach allows to encapsulate engineering intuition within a for-
mal framework, hence exploiting positive aspects of intuition while preventing
misguided aspects from causing havoc within the synthesis step.

In the context of discrete event and hybrid systems, where the “curse of
dimensionality” seems to be particularly prohibitive, a number of hierarchical
concepts have been discussed in the literature. Our approach has been in-
spired by the hierarchical DES theory in [19], but is technically quite different
because we employ an input/output structure to adequately represent both
time and event driven dynamics for hybrid systems. There is also a strong
conceptual link to [8], where, as in [15, 4] and in our work, the preservation
of fundamental properties across levels of abstraction is of prime concern.

We demonstrate the potential of our hierarchical synthesis framework by
applying it to a multiproduct batch control problem which is simple enough
to serve as illustration for our main ideas, but of enough complexity to make
it hard to handle for unstructured synthesis methods.
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This contribution is organised as follows: in Section 2, we briefly sum-
marise our abstraction-based approach to hybrid control systems synthesis.
In Section 3, it is shown how this approach can be extended to a two-level
control structure. Section 4 describes the multiproduct batch control problem.
Finally, in Section 5, we apply our results to this test case.

2 Abstraction Based Supervisory Control

The purpose of this section is to briefly summarise key results from our earlier
work [10, 14]. They apply to the scenario depicted in Fig. 1. There, the plant

���
�

discrete event controller
(e.g. finite automaton)

y(k) ∈ Yu(k) ∈ U

continuous plant model
(e.g. ODEs)

quantisation

cont. dynamics with discrete external behaviour

ξ(t) ∈ R
p

Fig. 1. Continuous plant under discrete control.

model is continuous, realised, e.g., by a set of ODEs, but communicates with
its environment exclusively via discrete events. Input events from the set U
may switch the continuous dynamics, and output events from a set Y are
typically generated by some sort of quantisation mechanism. Hence both the
input and the output signal are sequences of discrete events, denoted by u
and y, respectively. Note that we do not need to specify at this point whether
events occur at equidistant instants of time (“time-driven sampling”, “clock
time”) or at instants of time that are defined by the plant dynamics, e.g., by
continuous signals crossing certain thresholds (“event-driven sampling”, “logic
time”). In J.C. Willems’ terminology (e.g. [18]), the (external) behaviour of a
dynamic system is the set of external signals that the system can evolve on.
Hence, with w := (u, y) and W := U × Y , the external plant behaviour Bp is
a set of maps w : N0 → W ; i.e. Bp ⊆ W N0 , where N0 is the set of nonnegative
integers and W N0 := {w : N0 → W} represents the set of all sequences in W .

To clarify the input/output structure, we use a slightly weakened version
of Willems’ I/O-behaviours:

Definition 1. B ⊆ W N0 is a (strict) I/- behaviour with respect to (U, Y ), if

(i) the input is free, i.e. PUB = UN0 and
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(ii) the output does (strictly) not anticipate the input5, i.e.

PUw̃|[0,k] = PUŵ|[0,k]

⇒ (∃w ∈ B)PYw|[0,k] = PYw̃|[0,k] and PUw = PUŵ

for all k ∈ N0, w̃, ŵ ∈ B; for the strict case the premiss on the l.h.s. is
weakened to PUw̃|[0,k) = PUŵ|[0,k).

Item (ii) in Def. 1 says that we can change the future (and, in the strict case,
the present) of the input without affecting present and past of the output.

We now focus on the role of a controller, or supervisor, evolving on the
same signal space as the plant model. Adopting the concepts of supervisory
control theory for DESs [17] to the behavioural framework, the task of a
supervisor Bsup ⊆ W N0 is to restrict the plant behaviour Bp ⊆ W N0 such
that the closed loop behaviour contains only acceptable signals. The closed
loop behaviour Bcl is Bp ∩Bsup, because a signal w ∈ Bp “survives” closing
the loop if and only if it is also in Bsup. We collect all acceptable signals in the
specification behaviour Bspec and say that the supervisor Bsup enforces the
specification if Bcl ⊆ Bspec. It is immediately clear that any supervisor must
exhibit two additional properties: (i) it must respect the I/O structure of the
plant, i.e., it may restrict the plant input but then has to accept whatever
output event the plant generates; (ii) it must ensure that, at any instant of
time, there is a possible future evolution for the closed loop. This is formalised
by the following definition:

Definition 2. A supervisor Bsup ⊆ W N0 is admissible to Bp ⊆ W N0 if

(i) Bsup is generically implementable, i.e. k ∈ N0, w|[0,k] ∈ Bsup|[0,k],

w̃|[0,k] ∈ W k+1, w̃|[0,k] ≈y w|[0,k] implies w̃|[0,k] ∈ Bsup|[0,k]; and
(ii) Bp and Bsup are non-conflicting, i.e. Bp|[0,k] ∩ Bsup|[0,k] = (Bp ∩

Bsup)|[0,k] for all k ∈ N0.

This leads to the following formulation of supervisory control problems.

Definition 3. Given a plant Bp ⊆ W N0 , W = U × Y , and a specification
Bspec ⊆ W N0 , the pair (Bp, Bspec)cp is a supervisory control problem. A
supervisor Bsup ⊆ W N0 that is admissible to Bp and that enforces Bspec is
said to be a solution of (Bp, Bspec)cp.

In [10, 11], we adapt the set-theoretic argument of [17] to show the unique
existence of the least restrictive solution for our class of supervisory control

5 The restriction operator ( · )|[k1,k2) maps sequences w ∈ W N0 to finite strings
w|[k1,k2) := w(k1)w(k1 + 1) · · · w(k2 − 1) ∈ W k2−k1 , where W 0 := {ε} and ε

denotes the empty string. For closed intervals, ( · )|[k1,k2] is defined accordingly.
For W = U × Y , the symbols PU and PY denote the natural projection to the

resp. component, i.e. PUw = u and PYw = y for w = (u, y), u ∈ UN0 , y ∈ Y N0 .
We use w̃|[0,k] ≈y w|[0,k] as an abbreviation for the two strings to be identical up
to the last output event, i.e. PUw̃|[0,k] = PUw|[0,k] and PYw̃|[0,k) = PYw|[0,k).
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problems. Note that the least restrictive solution may be trivial, i.e. Bsup = ∅,
as this is admissible to the plant and, because of Bp ∩∅ ⊆ Bspec, enforces the
specifications. Obviously, only nontrivial solutions are of interest. Therefore,
if ∅ turns out to be the least restrictive solution of (Bp, Bspec)cp, one would
conclude that the specifications are “too strict” for the given plant model.

If both Bp and Bspec could be realised by finite automata, we could eas-
ily compute (a realisation of) the least restrictive solution of (Bp, Bspec)cp
by appropriately modifying standard DES tools. While a finite automaton
realisation of Bspec ∈ W N0 is quite common for finite W , the hybrid plant
is in general not realisable on a finite state space. In [16, 10], we suggest to
approach this problem by replacing Bp with an abstraction6

Bca that is re-
alised by a finite automaton. We can then readily establish a solution Bsup

of the (purely discrete) control problem (Bca, Bspec)cp. Clearly, because of
Bp ∩ Bsup ⊆ Bca ∩ Bsup ⊆ Bspec, the resulting supervisor also enforces the
specifications for the original plant Bp. To show that Bsup is also admissible
to Bp and hence solves the original (hybrid) control problem (Bp, Bspec)cp,
we employ the notion of completeness:

Definition 4. [18] A behaviour B ⊆ W N0 is complete if

w ∈ B ⇔ ∀ k ∈ N0 : w|[0,k] ∈ B|[0,k] .

Hence, to decide whether a signal w belongs to a complete behaviour, it
is sufficient to look at “finite length portions” of w. The external behaviour
induced by a finite state machine is an example for completeness. B = {w ∈
R

N0 | limk→∞ w(k) = 0}, on the other hand, is not complete. As a consequence
of the following proposition, admissibility of a supervisor is independent of the
particular plant dynamics provided that all involved behaviours are complete:

Proposition 1. [11] Let Bp ⊆ W N0 be a complete I/- behaviour and Bsup ⊆
W N0 be complete and generically implementable. Then Bp and Bsup are non-
conflicting.

For the remainder of this paper, we restrict consideration to complete
behaviours. Theorem 1 then follows immediately from Proposition 1.

Theorem 1. Let Bca ⊆ W N0 , W = U × Y , be an abstraction of an I/-
behaviour Bp ⊆ W N0 , let Bspec ⊆ W N0 , and let Bsup ⊆ W N0 be a nontrivial
solution of the supervisory control problem (Bca, Bspec)cp. If Bp and Bsup

are complete then Bsup is a nontrivial solution of (Bp, Bspec)cp.

In practice, to make our approach work, a sequence of increasingly refined
abstractions Bl, l = 1, 2, . . ., of Bp, i.e. Bp ⊆ . . . Bl+1 ⊆ Bl . . . ⊆ B1,
is employed. In [16, 10], we suggest l-complete approximations as candidate
abstractions Bl. One then begins with the “least accurate” abstraction B1,

6
Bca is said to be an abstraction of Bp, if Bp ⊆ Bca.
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checks whether a non-trivial solution of (B1, Bspec)cp exists and, if this is
not the case, turns to the refined abstraction B2. In this way, refinement and
discrete control synthesis steps alternate until either a nontrivial solution to
(Bl, Bspec)cp and hence to (Bp, Bspec)cp is found or computational resources
are exhausted. Unfortunately, the latter case often turns out be true. This is
the motivation for a hierarchical extension of our approach.

3 Hierarchical Control

3.1 Control architecture

To simplify exposition, we concentrate on the two-level control architecture
shown in Fig. 2. Low-level control is implemented by an intermediate layer

B
L
p: low-level plant model

B
H
sup: high-level supervisor

Bım: aggregation & low-level control

uL yL

B
L
ım[BH

sup]

uH yH

B
H
ım[BL

p]

Fig. 2. Plant perspective (dashed) and supervisor perspective (dotted).

Bım communicating with the plant7 B
L
p via low-level signals uL and yL and

with the high-level supervisor B
H
sup via high-level signals uH and yH. Apart

from implementing low-level control mechanisms corresponding to high-level
commands uH, the intermediate layer Bım aggregates low-level measurement
information yL to provide high-level information yH to B

H
sup. Aggregation may

be both in signal space and in time, i.e. the time axis for high-level signals
may be “coarser” than for low-level signals. Note that in this scenario Bım is
a behaviour on WH ×WL, where WH := UH ×YH and WL := UL ×YL represent
the high and low-level signal sets.

From the perspective of the (low-level) plant B
L
p, interconnecting Bım

and B
H
sup provides the overall controller. Its external behaviour is denoted by

B
L
ım[BH

sup] and, as indicated by the dashed box in Figure 2, evolves on the
low-level signal space WL. The behaviour B

L
ım[BH

sup] is given by the projection
of Bım into W N0

L with the internal high-level signal restricted to B
H
sup:

7 To make notation easier to read, all high-level signals, signal sets and behaviours
will be indicated by a sub- or superscript “H”, while low-level entities will be
characterised by a sub- or superscript “L”. As the plant evolves on a physical,
i.e. low-level signal set, its behaviour will be denoted by B

L
p from now on.
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B
L
ım[BH

sup] := {wL| (∃wH ∈ B
H
sup)[ (wH, wL) ∈ Bım ]}. (1)

Clearly, we require the overall controller B
L
ım[BH

sup] to be a (nontrivial) solu-
tion of the original control problem (BL

p, B
L
spec)cp. In particular, the overall

controller is required to enforce the specification, i.e. we need

B
L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec . (2)

We now re-examine Fig. 2: from the perspective of the high-level supervisor
B

H
sup, interconnecting the intermediate layer Bım with the (low-level) plant

model B
L
p provides a compound high-level plant model. Its external behaviour

is denoted by B
H
ım[BL

p] and, as indicated by the dotted box in Fig. 2, evolves
on the high-level signal set WH. The behaviour B

H
ım[BL

p] is the projection of
Bım into W N0

H with the internal low-level signal restricted to B
L
p:

B
H
ım[BL

p] := {wH| (∃wL ∈ B
L
p)[ (wH, wL) ∈ Bım ]} . (3)

By the same argument as before, the high-level supervisor B
H
sup is required to

be admissible to the compound high-level plant model B
H
ım[BL

p], i.e. B
H
sup must

be generically implementable, and B
H
ım[BL

p] and B
H
sup must be non-conflicting.

We summarise our discussion of Figure 2 in the following definition.

Definition 5. The pair (Bım, B
H
sup)tl is a two-level hierarchical solution of

the supervisory control problem (BL
p, B

L
spec)cp if

(i) B
L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec, and

(iia) B
L
ım[BH

sup] is admissible to B
L
p, and

(iib) B
H
sup is admissible to B

H
ım[BL

p].

We will now investigate how to make sure that the admissibility conditions
(iia) and (iib) in Def. 5 hold. More precisely, we will discuss which property of
Bım will help to enforce these conditions. To structure the discussion, we first
address the case of uniform time scales on both signal levels. A layer suitably
mediating between different time scales will be investigated subsequently.

Uniform time scales – type I intermediate layer

From Fig. 2 it is obvious that uH and yL can be interpreted as inputs of the
intermediate layer Bım, while uL and yH are outputs. It is therefore natural
to require that Bım is a (strict) I/- behaviour w.r.t. (UH × YL, YH × UL). If it
is also complete, I/- and completeness properties are passed from B

L
p to to

B
H
ım[BL

p]. Formally, this can be stated as

Lemma 1. If Bım is a complete strict I/- behaviour w.r.t. (UH×YL, YH×UL),
and if B

L
p is a complete I/- behaviour w.r.t. (UL, YL), then B

H
ım[BL

p] is a
complete I/- behaviour w.r.t. (UH, YH).

The same property of Bım ensures that completeness and generic imple-
mentability carry over from B

H
sup to B

L
ım[BH

sup]. Formally:
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Lemma 2. If Bım is a complete strict I/- behaviour w.r.t. (UH×YL, YH×UL),
and if B

H
sup is complete and generically implementable, then B

L
ım[BH

sup] is
complete and generically implementable.

From Lemma 1 and 2, we can immediately deduce the following important
statement: if the plant model B

L
p is a complete I/- behaviour, if the intermedi-

ate layer Bım is a complete strict I/-behaviour, and if the high-level supervisor
is both complete and generically implementable, then the admissibility Con-
ditions (iia) and (iib) are satisfied.

Multiple time scales – type II intermediate layer

High-level and low-level signals are often defined on different time scales.
Typically, in technical realisations, low-level signals “live” on a discrete time
axis that is obtained by (fast) equidistant sampling. High-level signals mostly
live on a time axis that is generated by low-level signals. A common scenario
is that yL produces events, e.g. when certain thresholds are crossed. yH is
then a sequence of events, and its time axis is constituted by event times. We
assume that high-level commands are immediately issued after the occurrence
of a high-level measurement event, hence uH lives on the same time axis as
yH. This scenario is illustrated in Fig. 3. We call the resulting high-level time
a dynamic time scale and formally define this notion as follows:

uL( j )

uH(k)

yL( j )

yH(k)

high-level time scale

low-level time scale j ∈ N0

k ∈ N0

Fig. 3. Two time scales.

Definition 6. Let T : Y N0
L → N0

N0 . The operator T is said to be a dynamic
time scale if T is strictly causal8 and if the time transformation T (yL) : N0 →
N0 is surjective and monotonically increasing for all yL ∈ Y N0

L .

For a fixed low-level signal yL, the time transformation T (yL) maps low-level
time j ∈ N0 to high-level time k ∈ N0. By requiring that T itself is a strictly

8 Recall that an operator H : UN0 → Y N0 , i.e. an operator mapping signals u to
signals y, is called strictly causal if ũ|[0,k) = û|[0,k) ⇒ H(ũ)|[0,k] = H(û)|[0,k]

for all k ∈ N0, ũ, û ∈ UN0 .
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causal operator, we ensure that at any instant of time the transformation
T (yL) only depends on the strict past of yL.

We focus on measurement aggregation operators that are causal with re-
spect to a dynamic time scale:

Definition 7. The operator F : Y N0
L → Y N0

H is said to be causal w.r.t. T if T
is a dynamic time scale and if

ỹL|[0,j] = ŷL|[0,j] ⇒ F (ỹL)|[0,k] = F (ŷL)|[0,k] (4)

for k = T (ỹL)(j) and all j ∈ N0, ỹL, ŷL ∈ Y N0
L .

We still have to link high-level control signals uH to low-level control signals
uL. This is done via a sample-and-hold device that is triggered by the time
transformation T (yL), i.e. successive high-level control actions are passed on
to the lower level whenever a high-level measurement is generated. Formally,
this is expressed by uL = uH ◦ T (yL).

In summary, an intermediate layer Bım mediating between low-level and
high-level time is completely defined by a dynamic time scale T and a mea-
surement aggregation operator F that is causal w.r.t. T :

Bım := {(uH, yH, uL, yL)| yH = F (yL) and uL = uH ◦ T (yL)} . (5)

It can be shown that (5) represents a complete behaviour and, like the inter-
mediate layer discussed in the previous section, preserves the input/output
structure of the plant and generic implementability of the supervisor.

Lemma 3. For Bım given by (5) and B
L
p a complete I/- behaviour w.r.t.

(UL, YL), it follows that B
H
ım[BL

p] is a complete I/- behaviour w.r.t. (UH, YH).

Lemma 4. If Bım is given by (5), and if B
H
sup is complete and generically

implementable, it follows that B
L
ım[BH

sup] is complete and generically imple-
mentable.

In most practical situations, we will have to combine the two types of
intermediate layers discussed on the previous pages. It is intuitively clear that
combinations of type I and type II layers will also preserve the input/output
structure of B

L
p and generic implementability of B

H
sup across the resulting

intermediate layer. We will therefore omit a formal treatment (for this, the
interested reader is referred to [13]) and conclude the discussion on structural
properties of Bım by collecting the relevant facts in the following proposition.

Proposition 2. If the plant model B
L
p is a complete I/- behaviour, if the

intermediate layer Bım is an arbitrary combination of type I layers (i.e. com-
plete strict I/-behaviours) and of type II layers (i.e. given by (5)), and if the
high-level supervisor is both complete and generically implementable, then the
admissibility Conditions (iia) and (iib) are satisfied.

We are now in a position to discuss how to design Bım and B
H
sup (subject to

the above constraints) such that B
L
p ∩B

L
ım[BH

sup] ⊆ B
L
spec, the last remaining

condition from Definition 5, is also satisfied and (Bım, B
H
sup)tl therefore forms

a two-level hierarchical solution of the control problem (BL
p, B

L
spec)cp.
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3.2 A bottom-up design procedure

We suggest an intuitive bottom-up procedure where we first design appropri-
ate low-level control Bım and then find a suitable high-level supervisor B

H
sup.

In a first step, we formalise the intended relation between high-level and
low-level signals by the specification B

HL
spec ⊆ (WH × WL)

N0 . Hence B
HL
spec

denotes the set of all signal pairs (wH, wL) that represent the desired effect of
high-level control on the low-level plant B

L
p and, by implication, on the high-

level measurement. To ensure that wH and wL are related in the intended way,
we require the intermediate layer Bım to enforce the specification B

HL
spec when

connected to the low-level plant B
L
p. This condition is expressed by:

{(wH, wL) ∈ Bım| wL ∈ B
L
p} ⊆ B

HL
spec . (6)

Suppose we have designed Bım to enforce (6), perhaps using classical con-
tinuous control methods. In principle, we could then base the design of B

H
sup

on the compound high-level plant B
H
ım[BL

p]. However, from a computational
point of view — particularly for hybrid systems — it is preferable to use an
abstraction B̃

H
p of B

H
ım[BL

p] that does not explicitly depend on the low-level
dynamics or the precise nature of the implemented low-level control scheme. A
suitable abstraction B̃

H
p and a high-level specification B̃

H
spec expressing B

L
spec

in terms of high-level signals can be derived from (6):

B̃
H
p := {wH| (∃wL)[ (wH, wL) ∈ B

HL
spec] } ; (7)

B̃
H
spec := {wH| (∀ wL) [ (wH, wL) ∈ B

HL
spec ⇒ wL ∈ B

L
spec ] } . (8)

In other words, the abstraction B̃
H
p of the compound high-level plant model is

just the projection of the specification B
HL
spec onto its high-level signal compo-

nents. Then, as desired, the resulting high-level control problem (B̃H
p , B̃

H
spec)cp

does not depend on the actual low-level plant under low-level control, B
H
ım[BL

p],
but only on the specification B

HL
spec of the preceeding low-level design step.

It follows immediately that any (nontrivial) solution B
H
sup of the high-level

control problem (B̃H
p , B̃

H
spec)cp will enforce the original low-level specification

B
L
spec when connected to B

H
ım[BL

p], the plant model under low-level control:

B̃
H
p ∩ B

H
sup ⊆ B̃

H
spec =⇒ B

L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec . (9)

Hence Condition (i) from Def. 5 also holds, and the pair (Bım, B
H
sup)tl is a

two-level hierarchical solution of the overall control problem (BL
p, B

L
spec)cp.

If B̃
H
p and B̃

H
spec can be realised by finite automata, a slight modification

of standard DES methods, e.g. [17], may be used to synthesise B
H
sup. Such a

situation is to be expected when all continuous signals are “handled” by the
lower-level control scheme within Bım. Otherwise, another abstraction step is
required; see e.g. [10].

The “degree of freedom” in the proposed bottom-up approach is the spec-
ification B

HL
spec. In general, its choice can be guided by the same engineering
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intuition that we would use in a hierarchical ad hoc design. However, unlike
heuristic approaches, our method encapsulates intuition in a formal frame-
work where we can prove that the composition of high-level controller and
intermediate layer forms a valid solution of the original problem.

3.3 Minimising the cost of closed-loop operation

In addition to a “hard” specification (i.e., a specification that must hold),
many applications come with the control objective of minimising a certain
cost function. To address this issue, we describe a straightforward extension
of the hierarchical framework outlined in Section 3.1 and 3.2.

From the low-level perspective, we want to solve the control problem:

min
BLsup

max
wL

γL(wL) s.t. B
L
sup solves (BL

p, B
L
spec)cp , wL ∈ B

L
p ∩ B

L
sup , (10)

where γL : B
L
p ∩ B

L
spec → R is a (typically additive over time and positive)

function to associate the cost γL(wL) with each low-level plant signal wL that
satisfies the “hard” specification B

L
spec. Note that when the initial state of

the plant is given and the supervisor is sufficiently restrictive, the closed-loop
trajectory is unique and the maximum in (10) becomes obsolete. This will be
the case in our multiproduct batch application; see also Sections 4 and 5.

Suppose that the intermediate layer Bım has been designed as outlined in
Sections 3.1 and 3.2. We then define a pessimistic high-level cost function by

γH(wH) := max
wL

{γL(wL)| (wH, wL) ∈ Bım, wL ∈ B
L
p} , (11)

and seek an optimal solution B
H
sup for the high-level min-max problem

min
BHsup

max
wH

γH(wH) s.t. B
H
sup solves (B̃H

p , B̃
H
spec)cp and wH ∈ B̃

H
p ∩B

H
sup . (12)

Note that the overall controller, i.e. the interconnection B
L
ım[BH

sup] of Bım and
the optimal B

H
sup does not necessarily form an optimal solution to the original

problem (10). This is for two reasons: (i) the introduction of Bım reduces
the available degrees of freedom; (ii) in the high-level control problem (12),
the behaviour B

H
ım[BL

p] has been replaced by its abstraction B̃
H
p , resulting

in over-approximation of actual costs. On the positive side, we expect the
problem (12) to be computationally tractable in situations where (10) is not.
We want to emphasise that, despite the tradeoff between computational effort
and closed-loop performance, our bottom-up design method guarantees the
“hard” specification B

L
spec to hold.

4 Discontinuously Operated Multiproduct Batch Plant

In the chemical industries, discontinuously operated multiproduct plants are
widely used for the production of fine, or specialty, chemicals. In the sequel,
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we describe a specific example for a multiproduct batch control problem. It
is idealised to a certain extent but general enough to capture most of the
problems that characterise multiproduct batch plants. The plant is used to
produce three kinds of colour pigments (Fig. 4): from one of the storage tanks
B1, B2, or B3, solvent is pumped into either a large reactor R1 or a small
reactor R2. Reactant Ai, i = 1, 2, 3, is added to start reaction i delivering the

desired product: Ai
kP i−→ Pi. It is accompanied by a parallel reaction Ai

kW i−→ Wi

resulting in the waste product Wi. If concentration of Wi crosses a given
threshold Wi,max, product quality becomes unacceptable and the batch is
spoilt. For the duration of the reaction, there are two control inputs: the feed
rate of the reactant and the heating/cooling rate for the reactor.

Filter-
systemsF1

Vacuum

A1 A3A2

R1
R2

B1 F2 B2 F3 B3

Feed tanks

Reactors

Products Products Products

Fig. 4. Example plant.

After the reaction is finished, the contents of the reactors is filtered through
either F1, F2, or F3, and the solvent is collected in the corresponding tank B1,
B2, or B3. The solvent can subsequently be fed back into the reactors. If, in
any of the filters, darker colours are filtered before lighter ones (say P3 before
P1 or P2, and P2 before P1), a cleaning process between the two filtration
tasks is needed, taking time tc. The feed rates into the reactors are discrete-
valued control inputs as are the decision variables (realised by discrete valve
positions) that determine whether a particular reactor is emptied through a
particular filter. Heating/cooling rates are continuous-valued control inputs.
The overall aim is to produce the demanded product volumes with minimal
operating costs, while satisfying quality constraints (upper bounds for waste
concentrations) and safety constraints (upper bounds for reactor tempera-
tures). For simplicity, the following assumptions are made for the reactions:

1. all reactions are first order.
2. the volume of reactant Ai, product Pi and waste product Wi, i = 1, 2, 3,

is negligible compared to overall reactor volume. The latter can therefore
be considered constant during dosing and reaction.
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3. the time constants for heating/cooling of the reactors are small compared
to the reaction time constants. The (scaled) reactor temperatures can
therefore be considered to be the manipulated variables.

With these assumptions, the model equations can be easily derived from com-
ponent balances:

d

dt
cAi

(t) =
q(t)

V
− (kPi(t) + kWi(t)) cAi

(t), (13)

d

dt
cPi

(t) = kPi(t)cAi
(t), (14)

d

dt
cWi

(t) = kWi(t)cAi
(t), (15)

where V is the volume of the considered reactor, q the corresponding dosing
rate (in kmol/h), and cAi

, cPi
, cWi

are reactant, product and waste concen-
tration in the ith reaction (in kmol/m3), i = 1, 2, 3. The reaction kinetics

kPi(t) = kPi0e
−

EP i
Rθ(t) , (16)

kWi(t) = kWi0e
−

EW i
Rθ(t) (17)

are determined by temperature θ. Defining u(t) := kW1(t), βi := EPi/EW1,

δi := EWi/EW1, αi := kPi0/k
βi

W10
, γi := kWi0/k

δi

W10
, we rewrite (13)–(15) as

d

dt
cAi

(t) =
q(t)

V
−

(

αiu(t)βi + γiu(t)δi
)

cAi
(t), (18)

d

dt
cPi

(t) = αiu(t)βicAi
(t), (19)

d

dt
cWi

(t) = γiu(t)δicAi
(t). (20)

Note that δ1 = γ1 = 1, and that u is strictly monotonically increasing in θ
and can therefore be considered as scaled temperature with unit [1/h] .

5 Hierarchical Control of Multiproduct Batch Plant

5.1 Low-level plant model

The low-level plant model represents the continuous dynamics of filter and
reaction processes in the various modes of operation. We consider low-level
signals to evolve w.r.t. clock time, using a suitably small sampling period.

Note that after a reaction is finished, the respective reactor has to be
emptied, i.e., its contents has to be filtered before the reactor can be reused in
another production step. Neglecting the time required to fill a reactor, there
are at most two concurrent operations performed by the plant. Thus, our low-
level plant model consists of two subsystems, each of which is being used for
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one out of three chemical reaction schemes or a subsequent filtering process.
As a low-level signal space we choose WL = WL1×WL2, where each component
corresponds to one subsystem.

The possible modes of operation for the subsystem j ∈ {1, 2} consist of
the three chemical reactions and the filtering processes. The latter can use
any nontrivial combination of the three filters. Including a cleaning and an
“idle” mode, this gives a total of 3 + 2 + 7 = 12 modes for each subsystem;
they can be conveniently encoded as a discrete input uDj, j = 1, 2, with range

UDj = {P1, P2, P3, Clean, Idle, F001, F010, F011, . . . , F111} . (21)

While in one of the reaction modes Pi, low-level dynamics is modelled by
a sampled version of the ODEs (18), (19), (20). The parameters are as follows:
β1 = 0.5, α1 = 2.0h−0.5, β2 = 0.4, α2 = 2.0h−0.6, β3 = 0.5, α3 = 3.0h−0.5,
δi = γi = 1, i = 1, 2, 3; the initial concentrations at the beginning of each
reaction are all zero: cAi0 = cPi0 = cWi0 = 0, i = 1, 2, 3. The product
concentrations required at the end of each reaction are cP1e = 10kmol/m3,
cP2e = 8kmol/m3, cP3e = 12kmol/m3, and the bounds for the waste concen-
trations cW1

, cW2
, cW3

are 2kmol/m3, 1.5kmol/m3, and 3kmol/m3, respec-
tively. The volumes of reactor R1 and R2 are 5m3 and 2.5m3, respectively.
The (on/off) dosing signal qj can take values in the set {0, 12kmol/h}, and
the control signal uj is required to “live” within the interval [0.01h−1, 3.0h−1],
where the upper bound results from safety requirements. The signal (qj , uj)
is seen as an additional low-level input uCj with range UCj ⊆ R

2. We assume
the continuous state is measured as a plant output yCj with range YCj ⊆ R

3.
For filtering, an integrator models the progress of time, where the integra-

tion constant depends on the number of filters used and the volume of the
respective reactor. The time to empty the smaller of the two reactors through
one filter is ctf = 6h. If two or three filters are being used simultaneously, this
reduces to 3h and 2h. For the larger reactor, filtering takes twice as long. The
continuous input uCj is ignored in filtering mode.

The completion of either operation corresponds to reaching a target region
within the continuous state space. This is indicated by a discrete low-level out-
put yDj which can take values in {Busy, Done}. The signal space of subsystem
j ∈ {1, 2} is then given by the product

WLj = ULj × YLj , ULj = UDj × UCj , YLj = YDj × YCj .

This is illustrated in Fig. 5, which summarises the overall control architecture.
Note that in Fig. 5, the two subsystems are shown merged. With the above
parameters, the typical time to finish a reaction step is between 5h and 10h,
with filtering taking at least another two hours.

5.2 Low-level specification and cost function

The low-level specification B
L
spec for the multiproduct batch example includes

the following requirements: (i) the mode of operation may only change imme-
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switching strategy (DES)

completion
detection

controller 1

controller 2

controller m

logic time
convert to

uD
τ yD

yDuD uC yC

operation 1

operation 2

operation m

Bım

B
H
sup: high-level supervisor

B
L
p: low-level plant

Fig. 5. Control architecture (subsystems merged).

diately after the previous operation has been completed; (ii) chemical reactions
and filtering alternate in each subsystem; (iii) each filter can only be used by
one subsystem at a time; (iv) the filters have to be cleaned when need arises
(see Section 4); (v) the demanded product volumes are produced. Note that
B

L
spec contains only discrete requirements and therefore represents a typical

discrete event specification, albeit in clock time. Formally, we therefore have
B

L
spec = B

D
spec× (UC×YC)N0 for some behaviour B

D
spec over UD×YD, implying

that the continuous low-level signals are not restricted9 by B
L
spec.

In a finite realisation of B
D
spec, the state needs to track the following:

current major mode of operation (52 possibilities: three reactions, filtering,
or cleaning in both subsystems); current allocation of filters (23 possibilities:
three filters which can be allocated to either subsystem); recent usage of filters
(33 possibilities: three filters, each of which could have been used for either
of three products); product volumes produced so far (63 possibilities: this
number results from the additional assumption that only integer multiples of
a minimum batch size are allowed and that the maximum demand for each
of the three products is known. In our example, 2.5m3 is the minimum batch
size and 12.5m3 the maximum demand.) This amounts to 1.16 × 106 states.

The integral cost function γL only refers to the UCj components of the
low-level signal. It includes energy cost (heating), material cost (feed rates)
and an overhead cost depending on time spent. For a low-level signal wL, let

γL(wL) :=

∫ Tf

0

(u1(t)+ 0.05q1(t))dt +

∫ Tf

0

(u2(t)+ 0.05q2(t))dt +

∫ Tf

0

0.15dt ,

(22)

9 Note that safety and quality restrictions are imposed indirectly – the former via
the restricted range for uCj = (qj , uj), the latter via the completion signals yDj ,
which are linked to the yCj reaching their target regions.
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where Tf denotes the time when all demanded products have been delivered.
Given low-level plant model, specification and cost function, one could

try to solve the optimisation problem (10) as it stands. This amounts to
a nonlinear mixed discrete-continuous dynamic program with 2 continuous
input signals (u1, u2), discrete input signals (uDj, qj , j = 1, 2) that altogether
can take (12 × 2)2 = 576 values, 6 continuous state variables, and a discrete
state set with 1.16 × 106 elements. Over an adequate time horizon (about
50h), we found this computationally intractable for off-the-shelf optimisation
software. Instead we apply the hierarchical procedure outlined in Section 3.2.

5.3 Hierarchical design – low-level control

Recall that low-level control is based on the specification B
HL
spec representing

the intended relation between high-level and low-level signals. For example,
we introduce high-level control symbols signifying the commands “run reac-
tion i in subsystem j such that the batch is finished at minimal cost within
time τj ∈ T = {1h, 2h, . . . 10h}”. This is implemented by 3 × 2 × 10 = 60
low-level controllers that can be selected by high-level control (see Fig. 5).
Obviously, low-level controller design is local in the sense that it only refers to
one reaction process and one subsystem at a time. The corresponding dynamic
program has 1 binary input (qj), 1 continuous input (uj) and 3 continuous
state variables (concentrations). It can be solved numerically by standard op-
timisation software. As an illustration, the minimal cost γ1,i(τ1) for reactor
R1 to produce one batch of product Pi is given in Table 1. As low-level opti-
misation does not depend on the demanded overall amount of products, this
design step only needs to be performed once over the life-cycle of the plant.

Table 1. Minimal cost for reactor R1 to produce one batch.

τ1 < 5h 5h 6h 7h 8h 9h 10h

γ1,1 ∞ ∞ 3.70 3.42 3.28 3.21 3.17
γ1,2 ∞ 2.81 2.58 2.46 2.40 2.36 2.32
γ1,3 ∞ ∞ 4.16 3.71 3.58 3.51 3.49

As indicated above, high-level control actions consist of modes from UDi

and timing parameters from T . Because the timing for the filter process and
the idle operation are determined by the mode, there are 3 × 10 + 9 = 39
relevant high-level control actions per subsystem to be encoded in UH. As
high-level measurement, we choose the completion component from the low-
level subsystems, i.e. YH = {Busy, Done1, Done2}. While low-level signals
“live” on clock time, high-level signals evolve on logic (event-driven) time,
where events are triggered by changes in the YDj-components.

5.4 Hierarchical design – high-level control

Connecting the intermediate layer (i.e., the low-level control and measurement
aggregation mechanism described above) to the plant model, results in a hy-
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brid system with external behaviour B
H
ım[BL

p]. To design a suitable high-level
supervisor, we need a discrete abstraction of B

H
ım[BL

p], a high-level “image”
of the original specification B

L
spec, and a high-level cost function γH.

As pointed out in Section 3.2, we can derive a suitable abstraction B̃
H
p di-

rectly from the intermediate layer specification B
HL
spec. The specified external

behaviour of each subsystem under low-level control (w.r.t. the discrete vari-
ables uDj and yDj) can be modelled as a timed discrete event system (TDES,
see e.g. [3]), where time is still clock time. To obtain a DES realisation of an
abstraction B̃

H
p of B

H
ım[BL

p], we form the synchronous product of the individ-
ual TDESs and remove tick events (which “count” the progress of clock time)
by language projection. Note that in our design the first instance where a
composition of subsystems needs to be computed occurs after the individual
subsystems have undergone considerable simplification.

According to (8), the high-level-specification B̃
H
spec can be directly ob-

tained from B
D
spec by transforming clock time to logic time. Together with

the high-level abstraction B̃
H
p , we obtain a transition system with 17 × 106

states and an average of 13.1 relevant input events per state. Since every high-
level input event corresponds to a low-level mode (either chemical reaction or
filtering) that will be completed at a known cost, the high-level cost function
γH is additive over high-level logic time (i.e. cost per transitions). Thus, the
high-level optimisation problem (12) can be solved using standard methods
from dynamic programming. On a decent desktop computer, synthesis of the
high-level supervisor takes 61 minutes. Fig. 6 shows the obtained closed-loop
operation to produce 12.5m3, 12.5m3 and 7.5m3 of the products P1, P2 and
P3, respectively. The overall cost amounts to 27.5.

P1

P1 P2

P1 P1 P2 P3

P2 P3

time 0 40h20h

SubSys1:

SubSys2:

Fig. 6. Optimal schedule (filter processes grey, cleaning black).

6 Conclusions

We discussed a hierarchical extension of our behavioural approach to hybrid
control synthesis. In particular, we provided conditions for intermediate layers
ensuring that all control layers interact in the desired sense. These conditions
imply that if each layer enforces its specification for an appropriate plant
model or abstraction, the resulting overall controller is guaranteed to enforce
the overall specification for the underlying plant model. We also discussed
how to add optimal performance objectives to hard specifications. We demon-
strated the potential of our approach through a multiproduct batch example,
which we found intractable using off-the-shelf optimisation software.
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