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Abstract— The aim of this paper is to optimize traffic
distribution coefficients in order to maximize the trasmission
speed of packets over a network. We consider a macroscopic
fluidodynamic model dealing with packets flow proposed in
[10], where the dynamics at nodes (routers) is decided by
a routing algorithm depending on traffic distribution (and
priority) coefficients. We solve completely the problem for the
simple case of two incoming and two outgoing lines.

I. I NTRODUCTION.

There are some recent works on car traffic flow on net-
works, see [7], [8], [11], that relie on macroscopic description
via car densities and other conserved quantities[3], [12], [13].
To treat a telecommunication network as Internet, we look
at at an intermediate time scale, thus assume that packets
transmission happens at a faster level but the equilibria of
the whole network are reached only as asymptotic.
A network is formed by a finite collection of transmission
lines and nodes (or routers), each packet is seen as a particle
on the network and it is assumed that:

1) Each packet travels on the network with a fixed speed
and with assigned final destination;

2) Routers receive, process and then forward packets.
Packets may be lost with a probability increasing with
the number of packets to be processed. Each lost packet
is sent again.

Based on these rules, first the behavior of a single straight
transmission line is modeled. Each router sends packets to
the following one a first time, then packets that are lost in
this process are sent a second time and so on. The important
point is that packets are sent until they reach next router, thus,
looking at intermediate time scale, it is assumed that packets
are conserved and we consider a simple model consisting of
a single conservation law:

ρt + f (ρ)x = 0, (1)

whereρ is the packet density,v is the velocity andf(ρ) =
vρ is the flux. Since the speed on the line is assumed
constant, we can derive an average transmission speed among
routers considering the amount of packets that may be lost.
Assigning a loss probability as function of the density, it
is possible to pass to the limit in the (re)sending procedure
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getting a velocity function and thus a flux function. Since the
aim is to consider complex networks, we need to introduce
a way of solving dynamics at nodes in which many lines
(backbones) intersect. For this, we propose the following
routing algorithm:

(RA) Packets are processed by arrival time and are sent to
outgoing lines in order to maximize the flux.

A key role is played by Cauchy problems with initial data
constant on each transmission lines called Riemann problems
at the node. In order to determine unique solutions to Rie-
mann problems, some additional parameters are introduced,
called respectively priority parameters and traffic distribution
parameters. The theory for this model is developed in [10].

Then we focus on a simple network formed of a single
junction with two incoming and two outgoing lines. We
assume that packets flow from two initial nodes to two
final ones. Assigned the packet quantities flowing from
initial to final nodes, we compute the final equilibrium as
function of the traffic distribution (and priority) parameter.
Such equilibrium determines the average speeds at which
packets travel on the network and we define some functional
measuring the average travel time. The aim is to optimize
the choice of the traffic distribution parameter in order to
minimize such functionals. The problem is completely solved
giving the optimal values as function of the packets densities.
It is interesting to notice that in many cases there is a set
of opitmal values (with the extreme case of functional not
depending on the parameter).

The paper is organized as follows. Section 2 describes
the dynamics of packet density on a single transmission
line giving two examples. Section 3 gives basic definitions
and notation for telecommunication networks. Section 4
illustrates the routing algorithm for Riemann problems at
junctions. Finally, in Section 5 we compute the optimal
parameters for the examples of section 2 and a simple
network.

II. PACKETS LOSS AND VELOCITY FUNCTIONS ON

TRANSMISSION LINES.

Each transmission line, represented by a real intervalI,
consists of many edges and nodes. Each node corresponds
to a server sending and receiving packets. To determine the
dynamics onI we need to describe the effect of packets
loss on the velocity of transmission function. As for the



Internet, we assume that each nodeNk sends again packets
that are lost by the following nodeNk+1. More precisely,
we assume that there exists a functionp : [0, ρmax] 7→ [0, 1]
that assigns the packet loss probability as function of the
packet density. Suppose thatδ is the distance between the
nodes Nk and Nk+1. Let ∆t0 be the transmission time
of packets from nodeNk to node Nk+1 in the case in
which they are sent with success at the first attempt, and
∆tav the average transmission time when some packets
are lost byNk+1 and they are sent again byNk. Let us
denote withv̄ = δ

∆t0
and v = δ

∆tav
the packets velocity,

respectively, in the two cases. Therefore at the first attempt
the packets sent by nodeNk reach with success nodeNk+1

with probability (1−p) and they are lost by nodeNk+1 and
sent again by nodeNk with probability p. At the second
attempt there are(1 − p) packets to be sent again and
(1 − p)p packets are sent with success whilep2 are lost.
Going on at then-th attempt(1 − p)pn−1 packets are sent
successfully andpn are lost. The average transmission time
is equal to∆tav =

∑+∞
n=1 n∆t0(1 − p)pn−1 = ∆t0

1−p , from
which we get that the transmission velocity is given by
v = δ

∆tav
= δ

∆t0
(1 − p) = v̄(1 − p). Once packets loss

has been measured, then the corresponding flux is easily
determined.

Example 1:Let us suppose that the packets loss probabil-
ity is given by

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
2(ρ−σ)

ρ , σ ≤ ρ ≤ ρmax.

The transmission velocity is equal to

v (ρ) = v̄(1− p(ρ)) =

{
v̄, 0 ≤ ρ ≤ σ,

v̄ (2σ−ρ)
ρ , σ ≤ ρ ≤ ρmax.

Imposing thatv(ρmax) = v̄ (2σ−ρmax)
ρmax

= 0, we get thatσ =
ρmax

2 . Sincef (ρ) = v(ρ)ρ it follows that

f (ρ) =
{

v̄ρ, 0 ≤ ρ ≤ σ,
v̄(2σ − ρ), σ ≤ ρ ≤ ρmax.

(2)

Example 2: If the packets loss probability is given by
p(ρ) = ρ+v̄−1

v̄ , then the transmission velocity isv(ρ) = 1−ρ
and the flux function is

f(ρ) = ρ(1− ρ). (3)
In what follows we suppose that measures on packets loss
probability leads to the formulation of Example 1 or 2.
Observe that for Example 1 the corresponding flux has the
property thatf ′(σ±) 6= 0 that allows to control the variation
of the density function in terms of the variation of the flux
function. We suppose for simplicity thatρmax = 1.

III. T ELECOMMUNICATION NETWORKS.

We consider a telecommunication network, that is mod-
elled by a finite set of intervalsIi = [ai, bi] ⊂ R, i =
1, ..., N, ai < bi, on which we consider the equation (1).
Hence the datum is given by a finite set of functionsρi

defined on[0,+∞[× Ii.

On each transmission lineIi we want ρi to be a weak
entropic solution, that is for every functionϕ : [0, +∞[× Ii

7→ R smooth, positive with compact support on]0, +∞[ ×
]ai, bi[

+∞∫

0

bi∫

ai

(
ρi

∂ϕ

∂t
+ f (ρi)

∂ϕ

∂x

)
dxdt = 0, (4)

and for everyk ∈ R and everyϕ̃ : [0,+∞[ × Ii 7→ R
smooth, positive with compact support on]0, +∞[× ]ai, bi[

+∞∫

0

bi∫

ai

(
|ρi − k| ∂ϕ̃

∂t
+

sgn(ρi − k) (f (ρi)− f (k)) ∂ϕ̃
∂x

)
dxdt ≥ 0.

It is well known that, for equation (1) onR and for every
initial data in L∞, there exists a unique weak entropic
solution depending in a continuous fashion from the initial
data inL1

loc. Moreover, for initial data inL∞ ∩L1 we have
Lipschitz continuous dependence inL1, see [5], [6].

We assume that the transmission lines are connected
by some junctions. Each junctionJ is given by a finite
number of incoming transmission lines and a finite number
of outgoing transmission lines, thus we identifyJ with
((i1, ..., in) , (j1, ...jm)) where the firstn-tuple indicates
the set of incoming transmission lines and the secondm-
tuple indicates the set of outgoing transmission lines. Each
transmission line can be incoming transmission line at most
for one junction and outgoing at most for one junction. Hence
the complete model is given by a couple(I,J ), where
I = {Ii : i = 1, ..., N} is the collection of transmission
lines andJ is the collection of junctions. For boundaries
of transmission lines not connected to junctions we can use
the theory of [1], [2], [4].

IV. R IEMANN PROBLEMS AT JUNCTIONS.

Now we discuss the solution at junctions. Ifρ =
(ρ1, ..., ρn+m) is a weak solution at the junction such that
eachx 7→ ρi(t, x) has bounded variation, thenρ satisfies
the Rankine-Hugoniot condition at the junctionJ , namely

n∑

i=1

f(ρi(t, b−i )) =
n+m∑

j=n+1

f(ρj(t, a+
j )), (5)

for almost everyt > 0. For a scalar conservation law a
Riemann problem is a Cauchy problem for an initial data
of Heavyside type, that is piecewise constant with only
one discontinuity. One looks for centered solutions, i.e.
ρ(t, x) = φ(x

t ), which are the building blocks to construct
solutions to the Cauchy problem via wave front tracking
algorithm. These solutions are formed by continuous waves
called rarefactions and by travelling discontinuities called
shocks. The speed of waves are related to the values off ′,
see [5], [9]. Analogously, we call Riemann problem for a
junction the Cauchy problem corresponding to an initial data
which is constant on each transmission line.



To solve Riemann problems according to (RA) we need
some additional parameters called priority and traffic distri-
bution parameters. For simplicity of exposition, consider a
junction J in which there are two transmission lines with
incoming traffic and two transmission lines with outgoing
traffic. In this case we have only one priority parameter
p ∈ ]0, 1[ and one traffic distribution parameterα ∈ ]0, 1[.
We denote withρi(t, x), i = 1, 2 and ρj(t, x), j = 3, 4 the
traffic densities, respectively, on the incoming transmission
lines and on the outgoing ones and by(ρ1,0, ρ2,0, ρ3,0, ρ4,0)
the initial datum. Since the speed of waves must be negative
on incoming lines and positive on outgoing ones, we wanto
to determine a unique4-tuple (ρ̂1, ..., ρ̂4) ∈ [0, 1]4 such that

ρ̂i ∈
{ {ρi,0} ∪ ]τ(ρi,0), 1] , if 0 ≤ ρi,0 ≤ σ,

[σ, 1] , if σ ≤ ρi,0 ≤ 1,
(6)

i = 1, 2, and

ρ̂j ∈
{

[0, σ], if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ , if σ ≤ ρj,0 ≤ 1,

(7)

j = 3, 4, and on each incoming lineIi, i = 1, 2, the solution
consists of the single wave(ρi,0, ρ̂i), while and on each
outgoing lineIj , j = 3, 4, the solution consists of the single
wave (ρ̂j , ρj,0). Defineγmax

i andγmax
j as follows:

γmax
i =

{
f(ρi,0), if ρi,0 ∈ [0, σ],
f(σ), if ρi,0 ∈ ]σ, 1] , i = 1, 2, (8)

and

γmax
j =

{
f(σ), if ρ3,0 ∈ [0, σ],

f(ρ3,0), if ρ3,0 ∈ ]σ, 1] , j = 3, 4. (9)

The quantitiesγmax
i andγmax

j represent the maximum flux
that can be obtained by a single wave solution on each trans-
mission line. In order to maximize the number of packets
through the junction over incoming and outgoing lines we
define Γ = min {Γin,Γout}, where Γin = γmax

1 + γmax
2

and Γout = γmax
3 + γmax

4 . One easily see that to solve
the Riemann problem, it is enough to determine the fluxes
γ̂i = f(ρ̂i), i = 1, 2. Let us determinêγi, i = 1, 2. We have
to distinguish two cases:
I Γin = Γ,
II Γin > Γ.
In the first case we set̂γi = γmax

i , i = 1, 2. Let us analyze
the second case in which we use the priority parameterp.
Not all packets can enter the junction, so letC be the amount
of packets that can go through. ThenpC packets come from
first incoming line and(1 − p)C packets from the second.
Consider the space(γ1, γ2) and define the following lines:

rp : γ2 =
1− p

p
γ1, rΓ : γ1 + γ2 = Γ.

DefineP to be the point of intersection of the linesrp and
rΓ. Recall that the final fluxes should belong to the region:

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , i = 1, 2} .

We distinguish two cases:
a) P belongs toΩ,

1

2

3

4

o

a

b

c

d

Fig. 1. A simple network.

b) P is outsideΩ.
In the first case we set(γ̂1, γ̂2) = P , while in the second
case we set(γ̂1, γ̂2) = Q, with Q = projrp∩rΓ(P ) where
proj is the usual projection on a convex set.
Let us now determinêγj , j = 3, 4. As for the incoming
transmission lines we have to distinguish two cases :
I Γout = Γ,
II Γout > Γ.
In the first casêγj = γmax

j , j = 3, 4. Let us determinêγj in
the second case. Recallα the traffic distribution parameter.
Since not all packets can go on the outgoing transmission
lines, we letC be the amount that goes through. ThenαC
packets go on the outgoing lineI3 and (1 − α)C on the
outgoing lineI4. Consider the space(γ3, γ4) and define the
following lines:

rα : γ4 =
1− α

α
γ3, rΓ : γ3 + γ4 = Γ.

DefineP to be the point of intersection of the linesrα and
rΓ. Recall that the final fluxes should belong to the region:

Ω =
{
(γ3, γ4) : 0 ≤ γj ≤ γmax

j , j = 3, 4
}

.

We distinguish two cases:
a) P belongs toΩ
b) P is outsideΩ.
In the first case we set(γ̂3, γ̂4) = P , while in the second
case we set(γ̂3, γ̂4) = Q, whereQ = projrα∩rΓ(P ).

We can extend the reasoning to the case ofn incoming
andm outgoing lines.

V. OPTIMIZATION OF A SIMPLE NETWORK

We focus on a simple network as in the Figure 1. There are
five nodes{1, 2, 3, 4, o} and four edges{a, b, c, d}, wherea
andb are the incoming lines to the centreo andc andd are
the outgoing lines from the centreo. There are packets from
nodes{1, 2} to nodes{3, 4} passing througho running on
lines a, b, c, d. We denote them bycij with i ∈ {1, 2} and
j ∈ {3, 4}. Thus the expected packets densities running on
the lines are given by
ρa from a to o: ρa = c13 + c14;
ρb from b to o: ρb = c23 + c24;
ρc from o to c: ρc = c13 + c23;
ρd from o to d: ρd = c14 + c24.
Our aim is first to solve the RP at the junctiono assuming



the densities on lines are constant and given by the above
formula. This gives us the expected equilibrium reached by
the network at regime. Then we want to compute the average
transmission time at regime over the network as function of
the parametersα andp. Therefore we introduce the following
costs:

J1 = Vac + Vad + Vbc + Vbd

J2 = cacVac + cadVad + cbcVbc + cbdVbd,

whereVϕψ = v(ρ̂ϕ)+v(ρ̂ψ), v(ρ̂ϕ), v(ρ̂ψ) are the velocities
on the lineseϕ, eψ andρ̂ is the solution to the RP. We define
γmax

ϕ (resp.γmax
ψ ) as in equation (8) (resp. equation (9)) and

consider the following systems:
{

γb = Γ− γa

γb = 1−p
p γa,

wherep is the priority parameter, and
{

γd = Γ− γc

γd = 1−α
α γc,

where α is traffic distribution parameter. The points satis-
fying the above systems arẽγa = pΓ, γ̃b = (1 − p)Γ and
γ̃c = αΓ, γ̃d = (1− α)Γ, respectively.
Consider the following conditions:
A1 γ̃c = αΓin ≤ γmax

c ;
A2 γ̃d = (1− α)Γin ≤ γmax

d .
Now, if Γ = Γin the solutions given to the RP are the
following:
• (γmax

a , γmax
b , γ̃c, γ̃d) if both A1 and A2 are satisfied,

• (γmax
a , γmax

b , γmax
c ,Γin−γmax

c ) if A1 is not satisfied and
A2 is satisfied,
• (γmax

a , γmax
b , Γin−γmax

d , γmax
d ) if A1 is satisfied and A2

is not satisfied.
Notice that the case of bothA1, A2 false is not possible
since otherwise it would beΓin ≥ Γout.
Consider the following conditions:
B1 γ̃a = pΓout ≤ γmax

a ;
B2 γ̃b = (1− p)Γout ≤ γmax

b .
Now, if Γ = Γout the solutions to the RP are the following:
• (γ̃a, γ̃b, γ

max
c , γmax

d ) if both B1 and B2 are satisfied,
• (γmax

a ,Γout−γmax
a , γmax

c , γmax
d ) if B1 is not satisfied and

B2 is satisfied,
• (Γout−γmax

b , γmax
b , γmax

c , γmax
d ) if B1 is satisfied and B2

is not satisfied.
Notice that the case of bothB1, B2 is not possible since
otherwise it would beΓout ≥ Γin.
Once fixedρϕ and ρψ, ϕ ∈ {a, b} and ψ ∈ {c, d}, we
can find for whichα and p conditionsA1, A2, B1, B2 are
satisfied as follows. IfΓ = Γin, let

γ′c = Γ− γmax
d , γ′d = Γ− γmax

c ,

β− =
γ′d

γmax
c

, β+ =
γmax

d

γ′c
,

then, for α ≥ 1
1+β− , A1 is false andA2 is true, for α ≤

1
1+β+ , A1 is true andA2 is false and finally, for 1

1+β+ ≤

α ≤ 1
1+β− , both A1 andA2 are true.

If otherwiseΓ = Γout, let

γ′a = Γ− γmax
b , γ′b = Γ− γmax

a ,

q− =
γ′b

γmax
a

, q+ =
γmax

b

γ′a
,

then, forp ≥ 1
1+q− , B1 is false andB2 is true, forp ≤ 1

1+q+ ,
B1 is true andB2 is false and finally, for 1

1+q+ ≤ p ≤ 1
1+q− ,

both B1 andB2 are true.

A. Optimal choice for flux of Example 2

To compute the costs we need to determine the equilibrium
densitiesρ̂. In general,̂ρϕ = f−1(γ̂ϕ) (ρ̂ψ = f−1(γ̂ψ) resp.)
and γ̂ϕ is either γ̃ϕ or γmax

ϕ or Γ − γmax
ϕ (γ̂ψ is either γ̃ψ

or γmax
ψ or Γ− γmax

ψ resp.).
Let us now focus on the flux of Example 2. For simplicity

we set herevmax = ρmax = 1 hencev(ρ) = 1 − ρ and
f(ρ) = ρ(1− ρ). We want to solvêρ(1− ρ̂) = γ̂. Hence, by
solvingρ̂2−ρ̂+γ̂ = 0, we getρ̂ = 1

2 (1±
√

∆(γ̂)) where∆ =
∆(γ̂) = 1− 4γ̂ andv(ρ̂ϕ) = (1− ρ̂ϕ) = 1

2 (1− sϕ

√
∆(γ̂ϕ))

(v(ρ̂ψ) = (1 − ρ̂ψ) = 1
2 (1 − sψ

√
∆(γ̂ψ)) resp.). Define for

incoming linessϕ = −1 if ρϕ ≤ σ andΓ = Γin, sϕ = +1
otherwise; and for outgoing onessψ = +1 if ρϕ ≥ σ and
Γ = Γout, sψ = −1 otherwise. Then, recalling (6) and (7),
we get

Vϕψ = 1
2 (2− sϕ

√
∆(γ̂ϕ)− sψ

√
∆(γ̂ψ)), J1 = 4−(

sa

√
∆(γ̂a) + sb

√
∆(γ̂b) + sc

√
∆(γ̂c) + sd

√
∆(γ̂d)

)

and

J2 = (ρa + ρb)− 1
2

(
saρa

√
∆(γ̂a) + sbρb

√
∆(γ̂b)

+scρc

√
∆(γ̂c) + sdρd

√
∆(γ̂d)

)
.

Finally we want to maximize the costJ1 = 4 −∑
sϕ

√
∆(γ̂ϕ) and J2 = (ρa + ρb) − 1

2

∑
sϕρϕ

√
∆(γ̂ϕ)

with respect toα andp.
Let us start withα. Assume first thatΓ = Γin = Γout.
Then bothA1 and A2 are satisfied if and only ifβ− =
β+ = γmax

d

γmax
c

, henceα = γmax
c

γmax
c +γmax

d
= γmax

c

Γ . In this case
γ̂ = (γmax

a , γmax
b , γmax

c , γmax
d ) , and J1 and J2 do not

depend onα. The same happens forΓ < Γin, thus we focus
on the caseΓ = Γin < Γout. We have:

γ̂ = (γmax
a , γmax

b , α(γmax
a +γmax

b ), (1−α)(γmax
a +γmax

b )).

Recalling thatΓin = γmax
a + γmax

b :

J1 = 4−∑
sϕ

√
∆(γ̂ϕ) =

4− (sa
√

1− 4γmax
a + sb

√
1− 4γmax

b ) (10)

−(sc

√
1− 4αΓin + sd

√
1− 4(1− α)Γin) (11)

and

J2 = (ρa + ρb)−
∑

sϕρϕ

√
∆(γ̂ϕ) =

(ρa + ρb)− (saρa
√

1− 4γmax
a + sbρb

√
1− 4γmax

b )(12)

−(scρc

√
1− 4αΓin + sdρd

√
1− 4(1− α)Γin). (13)



Now the part of the cost in (10) and in (12) does not depend
on α and maximizingJ1 andJ2 is equivalent to maximizing
expressions (11) and (13). Since we are in the caseΓ =
Γin < Γout, we get sc = sd = −1. Hence we have to
maximize the expressions

Ĵ1 =
√

1− 4αΓin +
√

1− 4(1− α)Γin (14)

Ĵ2 = ρc

√
1− 4αΓin + ρd

√
1− 4(1− α)Γin. (15)

Now the caseρa = ρb = 1
2 cannot happen since we would

have γmax
a = γmax

b = 1
4 , and Γ = 1

2 . But the maximal
value of Γout is 1

2 which fact contradicts the assumption
that Γin < Γout. Assume then that not bothρa and ρb are
equal to1

2 . Forα = 0, 1 we getĴ1(0) = Ĵ1(1) =
√

1− 4Γin

and for α = 1
2 we get Ĵ1( 1

2 ) = 2
√

1− 2Γin. Hence, since
Γ ≤ 1

2 , we obtainĴ1(0) < Ĵ1

(
1
2

)
.

Moreover

∂

∂α
Ĵ1(α) = 2Γin

−
√

1− 4(1− α)Γin +
√

1− 4αΓin√
1− 4αΓin

√
1− 4(1− α)Γin

> 0

for α < 1
2 . Then the cost functionJ1 is maximized for

the smallest or the biggest value ofα which guarantees
conditionsA1 andA2.
For α = 0 we getĴ2(0) = ρd

√
1− 4Γin, for α = 1 we get

Ĵ2(1) = ρc

√
1− 4Γin,

∂

∂α
J2 = 2Γin

−ρc

√
1− 4(1− α)Γin + ρd

√
1− 4αΓin√

1− 4αΓin

√
1− 4(1− α)Γin

> 0

for α < ᾱ = ρ2
d−ρ2

c(1−4Γin)

4Γin(ρ2
d+ρ2

c)
, and Ĵ2(ᾱ) =√

ρ2
c + ρ2

d

√
2(1− 2Γin). Then J2 is maximized for the

smallest or the biggest value ofα which guarantees con-
ditions A1 andA2.
Let us now consider the cases whereA2 is satisfied but
A1 is not and viceversa. In this case we either haveγ̂ =
(γmax

a , γmax
b , γmax

c ,Γ− γmax
c ) with

J1 = 4−∑
sϕ

√
∆(γ̂ϕ) = 4− (sa

√
1− 4γmax

a + sb·√
1− 4γmax

b )− (sc
√

1− 4γmax
c + sd

√
1− 4(Γ− γmax

c ))

and

J2 = (ρa + ρb)−
∑

sϕρϕ

√
∆(γ̂ϕ) =

(ρa + ρb)− (saρa
√

1− 4γmax
a + sbρb

√
1− 4γmax

b )
−(scρc

√
1− 4γmax

c + sdρd

√
1− 4(Γ− γmax

c ))

or γ̂ = (γmax
a , γmax

b , Γ− γmax
d , γmax

d ) with

J1 = 4−∑
sϕ

√
∆(γ̂ϕ) = 4− (sa

√
1− 4γmax

a + sb·√
1− 4γmax

b )− (sd

√
1− 4γmax

d + sc

√
1− 4(Γ− γmax

d )

and

J2 = (ρa + ρb)−
∑

sϕρϕ

√
∆(γ̂ϕ) =

(ρa + ρb)− (saρa
√

1− 4γmax
a + sbρb

√
1− 4γmax

b )
−(sdρd

√
1− 4γmax

d + scρc

√
1− 4(Γ− γmax

d )).

Clearly we have thatJ1 andJ2 do not depend onα.

B. Optimal choice ofα for Example 2

We can collect the information above as follows:
• β− ≤ 1 ≤ β+ then J1 is constant for0 ≤ α ≤ 1

1+β+

then it increases for 1
1+β+ ≤ α ≤ 1

2 then it decreases
for 1

2 ≤ α ≤ 1
1+β− and then it is again constant for

1
1+β− ≤ α ≤ 1. The optimal value forJ1 is for α = 1

2 .
• β− ≤ β+ ≤ 1 thenJ1 is constant for0 ≤ α ≤ 1

1+β+ then
it decreases for 1

1+β+ ≤ α ≤ 1
1+β− and then it is again

constant for 1
1+β− ≤ α ≤ 1. The optimal values ofJ1 are

for α ∈ [0, 1
1+β+ ].

• 1 ≤ β− ≤ β+ then J1 is constant for0 ≤ α ≤ 1
1+β+

then it increases for 1
1+β+ ≤ α ≤ 1

1+β− and then it is again
constant for 1

1+β− ≤ α ≤ 1. The optimal values ofJ1 are
for α ∈ [ 1

1+β− , 1].
Analogously forJ2 we have the following cases:
• β− ≤ 1

ᾱ − 1 ≤ β+ thenJ2 is constant for0 ≤ α ≤ 1
1+β+

then it increases for 1
1+β+ ≤ α ≤ ᾱ then it decreases

for ᾱ ≤ α ≤ 1
1+β− and then it is again constant for

1
1+β− ≤ α ≤ 1. The optimal value forJ2 is for α = ᾱ.
• β− ≤ β+ ≤ 1

ᾱ − 1 thenJ2 is constant for0 ≤ α ≤ 1
1+β+

then it decreases for 1
1+β+ ≤ α ≤ 1

1+β− and then it is again
constant for 1

1+β− ≤ α ≤ 1. The optimal values ofJ2 are
for α ∈ [0, 1

1+β+ ].
• 1

ᾱ − 1 ≤ β− ≤ β+ thenJ2 is constant for0 ≤ α ≤ 1
1+β+

then it increases for 1
1+β+ ≤ α ≤ 1

1+β− and then it is again
constant for 1

1+β− ≤ α ≤ 1. The optimal values ofJ2 are
for α ∈ [ 1

1+β− , 1].

C. Optimal choice ofp for Example 2

The parameterp affects the costs only ifΓ = Γout < Γin.
In this case we havêγ = (pΓ, (1− p)Γ, γmax

c , γmax
d ) and:

J1 = 4−
∑

sϕ

√
∆(γ̂ϕ) =

−(sa

√
1− 4pΓ + sb

√
1− 4(1− p)Γ) (16)

+4− (sc

√
1− 4γmax

c + sd

√
1− 4γmax

d ) (17)

and

J2 = (ρa + ρb)−
∑

sϕρϕ

√
∆(γ̂ϕ) =

−(saρa

√
1− 4pΓ + sbρb

√
1− 4(1− p)Γ) (18)

+(ρa + ρb)− (scρc

√
1− 4γmax

c + sdρd

√
1− 4γmax

d ). (19)

Now the part of the cost in (17) and in (19) does not depend
on p and maximizingJ1 andJ2 is equivalent to maximizing
expressions (16) and (18).
Since we are in the caseΓ = Γout < Γin, we get sc =
sd = +1 and the maximization ofJ1, J2 is equivalent to
maximize

Ĵ1 = −(
√

1− 4pΓ +
√

1− 4(1− p)Γ) (20)

Ĵ2 = −(ρa

√
1− 4pΓ + ρb

√
1− 4(1− p)Γ). (21)

Notice that in this case we have the same expressions of
Ĵ1 and Ĵ2 that we obtained in equations (14) and (15) with



opposite sign andp in the place ofα. The analysis thus
follows easily. In particular when conditionsB1 is false and
B2 is true or viceversa then the cost functionsJ1 andJ2 are
constant with respect top.

We can collect the information onp in the following way:
• q− ≤ 1 ≤ q+ thenJ1 is constant for0 ≤ p ≤ 1

1+q+ then
it decreases for 1

1+q+ ≤ p ≤ 1
2 then it increases for12 ≤ p ≤

1
1+q− and then it is again constant forWe distinguish three
cases:
1
2 − 1

1+q+ > 1
1+q− − 1

2 ,
1
2 − 1

1+q+ = 1
1+q− − 1

2 and
1
2 − 1

1+q+ < 1
1+q− − 1

2 .
Simplifying we obtain the three cases:q−q+ > 1, q−q+ = 1
and q−q+ < 1. In the first case we have that the optimal
values ofJ1 are for p ∈ [0, 1

1+β+ ], in the second case the
optimal values ofJ1 are forp ∈ [0, 1

1+q+ [ ∪ ] 1
1+q− , 1], and in

the third case the optimal values ofJ1 are forp ∈ [ 1
1+q− , 1],

• q− ≤ q+ ≤ 1 then J1 is constant for0 ≤ p ≤ 1
1+q+

then it increases for 1
1+q+ ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1. The optimal values ofJ1 are
for p ∈ [ 1

1+q− , 1].
• 1 ≤ q− ≤ q+ then J1 is constant for0 ≤ p ≤ 1

1+q+

then it decreases for 1
1+q+ ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1.
The optimal values ofJ1 are forp ∈ [0, 1

1+q+ ].
Analogously forJ2 we have the following cases:
• q− ≤ 1

p̄ − 1 ≤ q+ thenJ2 is constant for0 ≤ p ≤ 1
1+q+

then it decreases for 1
1+q+ ≤ p ≤ p̄ then it increases for̄p ≤

p ≤ 1
1+q− and then it is again constant for1

1+q− ≤ p ≤ 1.
We distinguish three cases:
p̄− 1

1+q+ > 1
1+q− − p̄,

p̄− 1
1+q+ = 1

1+q− − p̄ and
p̄− 1

1+q+ < 1
1+q− − p̄.

Simplifying we obtain 1
1+q− + 1

1+q+ < 2p̄, 1
1+q− + 1

1+q+ =
2p̄ and 1

1+q− + 1
1+q+ > 2p̄. In the first case we have that the

optimal values ofJ2 are forp ∈ [0, 1
1+q+ ], in the second case

the optimal values ofJ1 are forp ∈ [0, 1
1+q+ [ ∪ ] 1

1+q− , 1],
and in the third case the optimal values ofJ2 are for p ∈
[ 1
1+q− , 1],
• q− ≤ q+ ≤ 1

p̄ − 1 thenJ2 is constant for0 ≤ p ≤ 1
1+q+

then it increases for 1
1+q+ ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1. The optimal values ofJ2 are
for p ∈ [ 1

1+q− , 1].
• 1

p̄ − 1 ≤ q− ≤ q+ thenJ2 is constant for0 ≤ p ≤ 1
1+q+

then it decreases for 1
1+q+ ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1. The optimal values ofJ2 are

for p ∈ [0, 1
1+q+ ].

D. Optimal choices for Example 1

Notice that, in this case, the velocityv(ρ) is constant for
ρ < σ. Hence if Γ = Γin < Γout, i.e. the parameterα is
involved, then all solutions produce the same velocity thus
the same costsJ1 andJ2.
It remain to discuss the other case whereΓ = Γout < Γin

and only the parameterp matters. We get

∂J1

∂p
=

(2p− 1)Γ2(2− Γ)
(1− pΓ)(1− (1− p)Γ)

thus the sign is determined by the term(2p − 1) which is
negative forp ≤ 1

2 and positive forp ≥ 1
2 . We obtain the

same conclusions as in the previous subsection.

VI. CONCLUSIONS

We considered a macroscopic model for packets flow
on a telecommunication network obtained by looking at
intermediate time scale.
After the definition of solutions to Riemann problems at
nodes by a routing algorithm, we introduced some functions
measuring the average velocity of packets on the network.
For a simple network, we optimized the choice of parameters
involved in the solutions of Riemann problems to maximize
such performance functions.
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