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Abstract—The aim of this paper is to optimize traffic  getting a velocity function and thus a flux function. Since the
distribution coefficients in order to maximize the trasmission  aim is to consider complex networks, we need to introduce
speed of packets over a network. We consider a macroscopic a way of solving dynamics at nodes in which many lines

fluidodynamic model dealing with packets flow proposed in . . .
[10], where the dynamics at nodes (routers) is decided by (backbones) intersect. For this, we propose the following

a routing algorithm depending on traffic distribution (and ~ routing algorithm:

priority) coefficients. We solve completely the problem for the (RA) Packets are processed by arrival time and are sent to
simple case of two incoming and two outgoing lines. outgoing lines in order to maximize the flux.

l. INTRODUCTION. A key role is played by Cauchy problems with initial data

h ; K raffic f constant on each transmission lines called Riemann problems
ere are some recent works on car traffic flow on nety w0 oge. In order to determine unigue solutions to Rie-

works, see [7], [8], [11], that relie on macroscopic description,, 1, nroblems, some additional parameters are introduced,
via car densities and other conserved quantities(3], [12], [13},) 4 respectively priority parameters and traffic distribution
To treat a telecommun[catmn network as Internet, we IOOfﬁarameters. The theory for this model is developed in [10].
at at an |_ntermed|ate time scale, thus assume tha_t.p::.lcketsl-hen we focus on a simple network formed of a single
transmission happens at a faster level but the e'qumbrla ﬂfnction with two incoming and two outgoing lines. We
the whole network are reached only as asymptotic. = 3sume that packets flow from two initial nodes to two
A network is formed by a finite coIIectlon_ of transmlssmnﬁna' ones. Assigned the packet quantities flowing from
lines and nodes (or r-ogters), each packet is seen as a partigiy| 1 final nodes, we compute the final equilibrium as
on the network and it is assumed that: function of the traffic distribution (and priority) parameter.
1) Each packet travels on the network with a fixed speeguch equilibrium determines the average speeds at which
and with assigned final destination; packets travel on the network and we define some functional
2) Routers receive, process and then forward packet;easuring the average travel time. The aim is to optimize
Packets may be lost with a probability increasing withhe choice of the traffic distribution parameter in order to
the number of packets to be processed. Each lost packginimize such functionals. The problem is completely solved
IS sent again. giving the optimal values as function of the packets densities.
Based on these rules, first the behavior of a single straightis interesting to notice that in many cases there is a set
transmission line is modeled. Each router sends packets ab opitmal values (with the extreme case of functional not
the following one a first time, then packets that are lost iWlepending on the parameter).
this process are sent a second time and so on. The importanThe paper is organized as follows. Section 2 describes
point is that packets are sent until they reach next router, thube dynamics of packet density on a single transmission
looking at intermediate time scale, it is assumed that packdige giving two examples. Section 3 gives basic definitions
are conserved and we consider a simple model consisting&fid notation for telecommunication networks. Section 4
a single conservation law: illustrates the routing algorithm for Riemann problems at
junctions. Finally, in Section 5 we compute the optimal
pe+ f(p), =0, (1 parameters for the examples of section 2 and a simple

where) is the packet density; is the velocity andf(p) = network.

vp is the flux. Since the speed on the line is assumed ||. PACKETS LOSS AND VELOCITY FUNCTIONS ON
constant, we can derive an average transmission speed among TRANSMISSION LINES

routers considering the amount of packets that may be lost.

T - . .~ .~ "Each transmission line, represented by a real intefyal
Assigning a loss probability as function of the density, it :
; ) o : consists of many edges and nodes. Each node corresponds
is possible to pass to the limit in the (re)sending procedu

'S a server sending and receiving packets. To determine the
Work (partially) done in the framework of the HYCON Network of dynam|cs onl We. need to des_cnpe the effeCt of packets
Excellence, contract number FP6-IST-511368 loss on the velocity of transmission function. As for the



Internet, we assume that each nablg sends again packets On each transmission ling we wantp; to be a weak
that are lost by the following nod#&/;.,. More precisely, entropic solution, that is for every functign: [0, +oo[ x I;
we assume that there exists a functjon|0, p;me.] — [0,1] +— R smooth, positive with compact support & +oo| x
that assigns the packet loss probability as function of thia;, b;]

packet density. Suppose thatis the distance between the et

nodes N, and Ni,;. Let Aty be the transmission time dp A
of packets from nodeV, to node N,,; in the case in / / (pia + f (pi) 8x> dxdt = 0, 4)
which they are sent with success at the first attempt, and 0

At,, the average transmission time when some packets . '
are lost by Ny, and they are sent again hyj. Let us émd for everyk € R and everyg : [0, +oo[ x i — R

. . mooth itive with com r i b
denote with = > andv = <2 the packets velocity, smooth, positive with compact support i +oc| x Ja;, bi

respectively, in th%tutwo cases. Therefore at the first attempt-oo b; 95
the packets sent by nodg, reach with success nodg; / / (Ipi — k| i’+

with probability (1 — p) and they are lost by nod®},;, and ot

sent again by nodev, with probability p. At the second 0%

attempt there arg1 — p) packets to be sent again and sgn(pi — k) (f (pi) = f (K)) aT:) dzdt > 0.
(1 — p)p packets are sent with success white are lost.
Going on at then-th attempt(1 — p)p"~! packets are sent

successfully ang™ are lost. The average transmission tim

a;

It is well known that, for equation (1) of® and for every
initial data in L°°, there exists a unique weak entropic
olution depending in a continuous fashion from the initial

i _ +oo _ n—1 _ At . o -
IS gqual 0ALay = ), nAtOQ _p)p = ip f.rom data inL;,.. Moreover, for initial data inL>> N L' we have
which we get that the transmission velocity is given bxﬁipschitz continuous dependence i, see [5], [6]
5 5 oy — (1 , , [6].
U= gz = ag(L—p) = 0(1—p). Once packets 10Ss ‘\yo asume that the transmission lines are connected
has be_en measured, then the corresponding flux is easw some junctions. Each junctios is given by a finite
determined. .number of incoming transmission lines and a finite number
) E."ar.“p'e 1:Let us suppose that the packets loss probabi )f outgoing transmission lines, thus we identiffy with
ity is given by (i1, rin)  (jrs jm)) Where the firstn-tuple indicates
0 0<p<o the set of incoming transmission lines and the seconrd
p(p) =13 200-0) U; p; p’ , tuple indicates the set of outgoing transmission lines. Each
r — = A transmission line can be incoming transmission line at most
The transmission velocity is equal to for one junction and oqtgoi_ng at most for one junction. Hence
the complete model is given by a coupl&, ), where
() = 5(1 — p(p)) = v, 0<p<o, I = {l;:i=1,..,N} is the collection of transmission
v(p) =0l —-plp)) = 5@, 0 < p < Pmax- lines andJ is the collection of junctions. For boundaries

of transmission lines not connected to junctions we can use
IMposing thatv(pmax) = 922L=2x) — 0 we get thatr =  the theory of [1], [2], [4].

. . Pmax
pnéax' Sincef (p) = v(p)p it follows that IV. RIEMANN PROBLEMS AT JUNCTIONS

_ ) vp, 0<p<o, 2 Now we discuss the solution at junctions. =
f(p) - (20 — < < ( ) . . . .

(20 = p), 0<p< pmax- (p1, -, Pn+m) IS @ weak solution at the junction such that
Example 2:1f the packets loss probability is given by ggchs s pi(t,z) has bounded variation, then satisfies

_ pto—1 o g N _ _ - o
p(p) = £5—, then the transmission velocityigp) = 1—p  the Rankine-Hugoniot condition at the junctioip namely
and the flux function is

n n+m
Fp) = p(1 = p). (3) D Tt b)) = D flpit.a))), (5)
In what follows we suppose that measures on packets loss i=1 j=n+1

probability leads to the formulation of Example 1 or 2for almost everyt > 0. For a scalar conservation law a
Observe that for Example 1 the corresponding flux has thgiemann problem is a Cauchy problem for an initial data
property thatf’(0*) # 0 that allows to control the variation of Heavyside type, that is piecewise constant with only
of the denSity function in terms of the variation of the ﬂUXOne discontinuity. One looks for centered solutions, i.e.
function. We suppose for simplicity th@tn.. = 1. p(t,z) = ¢(%), which are the building blocks to construct
solutions to the Cauchy problem via wave front tracking
algorithm. These solutions are formed by continuous waves

We consider a telecommunication network, that is modealled rarefactions and by travelling discontinuities called
elled by a finite set of intervald; = [a;,b;] C R,i = shocks. The speed of waves are related to the valug$, of
1,...,N,a; < b;, on which we consider the equation (1).see [5], [9]. Analogously, we call Riemann problem for a
Hence the datum is given by a finite set of functions junction the Cauchy problem corresponding to an initial data
defined on|0, +-o00[ x I;. which is constant on each transmission line.

Ill. TELECOMMUNICATION NETWORKS.



To solve Riemann problems according to (RA) we need
some additional parameters called priority and traffic distri-

bution parameters. For simplicity of exposition, consider a a c

junction J in which there are two transmission lines with

incoming traffic and two transmission lines with outgoing

traffic. In this case we have only one priority parameter

p € ]0,1[ and one traffic distribution parameter < |0, 1]. / X

We denote withp;(t,z),i = 1,2 and p;(t,z),j = 3,4 the b

traffic densities, respectively, on the incoming transmission @ @
lines and on the outgoing ones and (¥ o, P2,0, £3,0, P4,0)

the initial datum. Since the speed of waves must be negative Fig. 1. A simple network.

on incoming lines and positive on outgoing ones, we wanto

to determine a uniqué-tuple (p1, ..., p1) € [0,1]* such that

. {pio} UlT(pio),1], if 0<pio <o, b) P is outsidef).
pi € { [0, 1], if o <pio<1, ®)  In the first case we s€ty1,42) = P, while in the second
. - case we sefd1,42) = @, with Q = proj, ..(P) where
i=1,2, and proj is the usual projection on a convex set.
R [0, 0], if 0<pjo<o, Let us now determiney;,j = 3,4. As for the incoming
pj € { {pj 0} U0, 7(pj0)[, if o <pjo<T, (") transmission lines we have to distinguish two cases :
out — F!

j = 3,4, and on each incoming ling, : = 1, 2, the solution ! FF ST
consists of the single wavép; o, ;), while and on each | out
outgoing linel;, j = 3, 4, the solution consists of the single
wave (pj, pjo). Define~*** and~*** as follows:

the first casey; = 7", j = 3, 4. Let us determingy; in
the second case. Recallthe traffic distribution parameter.
Since not all packets can go on the outgoing transmission
max | Fpio), i pio€0,0], . Lo g lines, we letC be the amgunt _that goes through. Theff
Vi = fo), if pio€lo1], i=12, (8) packets go on the outgoing ling and (1 — a)C on the
’ outgoing linel,. Consider the spacgys,~4) and define the
and following lines:
max __ f(a)a if £3,0 € [070]7 - 1—«
J _{ f(ps,0), if p3o€lo,l], j=34 0 Ta i 74 = =73 rriys+ya =1
The quantitiesy;"** and~;"** represent the maximum flux Define P to be the point of intersection of the lines and
that can be obtained by a single wave solution on each trans-. Recall that the final fluxes should belong to the region:
mission line. In order to maximize the number of packets Q- 0 < <X gy
through the junction over incoming and outgoing lines we = {(08,70) : 0 <9y <95 = 3,4}
definel’ = min{l';,,T,,}, wherel';, = 7" + 93" e distinguish two cases:
and ', = 73" + "™, One easily see that to solve ) P belongs tof
the Riemann problem, it is enough to determine the fluxas) p is outside.

¥i = f(pi),i = 1,2. Let us determingy;,i = 1,2. We have |n the first case we sefjs,94) = P, while in the second

to distinguish two cases: case we setis, 44) = Q, whereQ = proj,.r (P).

| Ty, =T, We can extend the reasoning to the case:dhcoming
I, >T. andm outgoing lines.

In the first case we se}; = /"**,i = 1,2. Let us analyze

the second case in which we use the priority paramgter V. OPTIMIZATION OF A SIMPLE NETWORK

Not all packets can enter the junction, sodebe the amount  We focus on a simple network as in the Figure 1. There are

of packets that can go through. The@' packets come from five nodes{1,2, 3, 4, o} and four edgega, b, ¢, d}, wherea

first incoming line and(1 — p)C packets from the second. andb are the incoming lines to the cenweandc andd are

Consider the spaceyi,v2) and define the following lines: the outgoing lines from the centre There are packets from
nodes{1,2} to nodes{3,4} passing through running on

T, ety =I lines a,b,c,d. We denote them by,; with ¢ € {1,2} and

] ] _ _ ) J € {3,4}. Thus the expected packets densities running on
Define P to be the point of intersection of the lines and  the Jines are given by

1-p

Tp Y2 =

rr. Recall that the final fluxes should belong to the regiony, from a to o: p, = c15 + c14;
0= : 0 <y < AT =12} pp from b to o: pp = coz + coy;
{(n72) : 0 <7 < } pe from o to ¢ p. = c13 + co3;

We distinguish two cases: pa from o to d: pg = c14 + co4.

a) P belongs tof2, Our aim is first to solve the RP at the junctierassuming



the densities on lines are constant and given by the abowe< + ——, bothAl and A2 are true.
formula. This gives us the expected equilibrium reached by otherwisel’ =T',,;, let
the network at regime. Then we want to compute the average

. . . . . — F max F maz
transmission time at regime over the network as function of Ya W = ’
the parameters andp. Therefore we introduce the following B o ;_ %nar
costs: q = ymas’ q N
a a
J1=Vac + Vad + Voe + Voa then, forp > 1+ —,Blis false andB2 is true forp < 1+q+,

J2 = CacVac + CaaVad + CocVoe + CoaVod, B1is true andB2 is false and finally, for—1—- 1

et <SPS T
whereV,y, = v(p,) +v(py), v(p,), v(py) are the velocities both Bl andB2 are true.
on the lines,, ey, andp is the solution to the RP. We define

V" (resp.y,*®) as in equation (8) (resp. equation (9)) an

dA‘ Optimal choice for flux of Example 2
<p

consider the following systems: To compute the costs we need to determine the equilibrium
densitiesp. In generalp, = f~*(5,) (py = f~(Jy) resp.)
{ Mo = F__p Va and4, is eithery, or y'*" or I' — y** (4, is eitheryy
M= 5 Ya or v, %" or I' — 4, ® resp.).

Let us now focus on the flux of Example 2. For simplicity

wherep is the priority parameter, and
p P yp we set herev,,ue = pmae = 1 hencev(p) =1-pand

v =T =", f(p) = p(1—p). We want to solveo(l —p) = 7 Hence, by
Ya = =2, solvingp? —p+4 = 0, we getp = li\/ )) whereA =
A(3) = 144 ando(p,) = (1 - m;) (1 — 5, /AGp))

where « is traffic distribution parameter. The points satis-, , - N 1

. _ ~ (v =(1- (1 — sy /AR resp) Define for
fying the above systems arg, = pI',5, = (1 —p)I" and in((:g}bn)ing (Iinesgt): 2 ,ojg s anwdl“ T 5o = 11
Ye = ol 5a = (1 — I, respectively. otherwise; and for outgoing ones, = +1 if p, > o and

Con~S|der the following conditions: I' = T'out, sy = —1 otherwise. Then, recalling (6) and (7),
Al 7. = al'y, <%, we get

A2 3g = (1 — a)Ty, <Aoo,
Now, if ' = I, the solutions given to the RP are the V,, = (2 — s,/A(5y) — su/ARw)), J1 =4—

folloynvilrlg' o o (sa\/A(%) + s/ AAb) + sev/ARe) + de)

o (Yo yar 5., 44) if both AL and A2 are satisfied,
o (yrar ~pnav ~mar T —~maer) if Al is not satisfied and and
A2 is satisfied,
o (7, Din — "%, g *®) if Al is satisfied and A2 J2 = (pa + o) (s“p“ VAG) + 5006/ A )

is not satisfied. +5cper/ D) + sapar/A ,yd)).

Notice that the case of botAl, A2 false is not possible

since otherwise it would b&;, > I'oy;. Finally we want to maximize the cost/, = 4 —
Consider the following conditions: S sov/AGe) and Jo = (pa + pp) — 32 P/ AR,
Bl 7y = plout < 7797, with respect tan and p.
B2 9, = (1 — p)Tout < 7", Let us start witha. Assume first thal® = T';,, = Tou:.
Now, if I' = T',,, the solutions to the RP are the following: Then bothAl and A2 are satisfied if and only i3~ =

o (Fa, Ab, 7%, e+ if both B1 and B2 are satisfied, gt = me, hencea = wclﬂgm — 2= In this case
o (YA Ty —yma® ymar ~maer) if B1 is not satisfied and 4 = (ygwﬂygmm,'ygnw,ym”) , and J; and J, do not
B2 is satisfied, depend orw. The same happens for< I';,,, thus we focus
o (Dout =" o™, yore® , yre®) if Bl is satisfied and B2 on the casd’ =T, < I'yy:. We have:
IS nOt SatISerd . . . 2 ( max 'HLa.L ( ma;c+ 'HL(IZ‘) (1_ )( max+ max))
Notice that the case of botB1, B2 is not possible since 7 = e 7% &% T ) (BT A) e T :
otherW|§e it would bd’,,; > T';,,. Recalling thafl';,, = yee 4 ymaz;
Once fixedp, and py, ¢ € {a,b} andvy € {c,d}, we
can find for whicha and p conditionsAl, A2, B1, B2 are Ji =43 5,/AF,) =
satisfied as follows. II" = I';,, let 4 — (50/T =477 4 5, /T — 407 (10)

=T — 4 L =T — yme —(scv/1—4aly, + sd\/l —4(1 — a)Tyy) (12)
ﬂ_ _ 7(11 ﬂ+ ,_Yarlnam and
Ve e Jo = (pa + pp) — Z*%P«p A(’Aﬁp) =

then fora > 7=, Al is false andA2 is true, fora < (Pa + pb) = (8apav/T— 4%”” + sppp/1 — 4777 X12)
1+B+’ Al is true andA2 is false and finally, for1+ﬁ+ < —(8epeV/'l —4aly, + saparn/1 —4(1 — a)Tyy). (13)



Now the part of the cost in (10) and in (12) does not depenl. Optimal choice ofx for Example 2

on « and maximizing/; and.J; is equivalent to maximizing
expressions (11) and (13). Since we are in the dase
Tin < Tou, We gets, = sq = —1. Hence we have to
maximize the expressions

We can collect the information above as follows:
e 3~ <1 < BT thenJ; is constant for0 < a < ﬁ
then it increases forlw+ < a < 1 then it decreases

for i <ac< ﬁ and then it is again constant for
1

Ji = 1—4aliy +/1—4(1— )Ty, (14) 1+[3 < a < 1. The optimal value fot/; is for a = -2
~ +
Jo = pe/1—daly, Jrpd\/l il —a)ls,. (15) ° B~ < BT <1thendJ; is constant foll <o < 1+ﬁ+ then
it decreases fow < a < 175= and then it is again
Now the casep, = pp, = 5 cannot happen since we would constant for1+5, < a < 1. The optimal values of/; are
have ymar = maz — }1, andT' = 3. But the maximal for a € [0, 75+ ].

value of I',,; is % which fact contradlcts the assumptione 1 < 3~ < g+ thenJ; is constant ford < a <

thatT";,, < I'yy:. Assume then that not both, andp, are
equal to}. Fora = 0,1 we getJ; (0) = J;(1) = 1 — 4Ty,
and fora =  we getJ;(3) = 2/1 - 2T,. Hence, since
I < 1, we obtainJ; (0) < J; (3).

Moreover

10} —/1—-4(1 —a)Ty, 1 —4aly,
7J1( ) 2F1n \/ a il \/ < >0
Oa V1-— 4arm\/1 —4(1 — )Ty,

for a < . Then the cost function/; is maximized for

the smallest or the biggest value af which guarantees
conditionsAl and A2.

For o = 0 we getJ(0) = pgy/T — 4Ly, for a = 1 we get

J2(1) = pey/T— AT,

EJQ _or,. —pe/1 —4(1 — )Ty + pav/'1 — 4aly, -0
Oa vV 1-—- 40[117;n - 4(1 - Oé)Fm

for @« < a = %ﬁ%), and Jy(a) =
VP2 + p2/2(1 —2Ty,). Then J, is maximized for the
smallest or the biggest value of which guarantees con-
ditions A1 and A2.

Let us now consider the cases whek@ is satisfied but

Al is not and viceversa. In this case we either hgve-
(,y;nacc7 ,ygnaz’ ,ygnaw’ F _ ,y;naa:) Wlth

Ji=4-3"5,/A(F,) =
VT ) — (5o T= 50 + 5,

1 —4ymaz 4 g
— AT =)

and
Jo = (pa + pb) - Zssopw A('%J) =
(Pa + Pb) - (sapa 1 —dypor + SbPbA/ 1- 4711;w$)

—A(T =)

or g = (3", 7" T = 7", 7g"**) with

J1:4725S0 A(A

VT =437%) = (s

_(scpc 1- 4’7/5”(” + Sapd

) = 4= (s T= 7™ + 51

1 _ 4,yma;c + Se /1 _ 4(F _ ,ygnax)

and
Jo = (pa +pp) — D SpPpy/ A('?go) =
(Pa + pb) = (Sapa/T — 2V + sppp /1 — 49777)

—(8apar/1 — 4y 4 scper/1 — 4 — y70%)).

Clearly we have that/; and J, do not depend oi.

1
I+6+
1+B* and then it is again
< a < 1. The optimal values of/; are

then it increases fog—+ <a<
constant forlw,
for a € [1755=, 1.
AnangousIHy forJ; we have the following cases:

e 3~ <1 -1<p" thenJ, is constant fol) < o < 1+ﬁ+
then it mcreases forlw+ < a < a then it decreases
for a < a < ﬁ and then it is again constant for

+ﬁ < a < 1. The optimal value fotJ; is for a = a.

e <pt<l_1thenssis constant fol) < a <
then it decreases foir— <a<
constant for1+5,
for a € |0, 1+ﬂ+]
el _1<p~<ptthendsis constant fol) < a < 1+ﬁ+

then it mcreases fog—+ <a< 1+ﬂ* and then it is again
constant for——— < a < 1. The optimal values of/, are

for a € [;2=

1+ﬁ+
1+ﬁ, and then it is again

< a < 1. The optimal values of/, are

C. Optimal choice of for Example 2

The parametep affects the costs only I =T,y < Ty,
In this case we havg = (pI', (1 — p)T', 7%, ") and:

B=a- Y /a0, =

—(8ay/1 —4pT + sp0/1 — 4(1 — p)T) (16)
1 — 4ymaz 4 Sdm) 17

and

J2 = (pa + po) Z 3<ppso\/7
—(sapam-l- spppy/ 1 —4(1 —p)l') (18)
+(pa + pv) = (5cper/1 — dyer + Sdde)' (19)

Now the part of the cost in (17) and in (19) does not depend
on p and maximizingJ; and.J, is equivalent to maximizing
expressions (16) and (18).

Since we are in the case = T',,; < 'y, We gets,
sq = +1 and the maximization of/;, J, is equivalent to
maximize

—(v/1=4pT' + /1 —4(1 — p)D)
pa¢1e4pr+pb¢1e 1—p)l).

Notice that in this case we have the same expressions of
J1 and J, that we obtained in equations (14) and (15) with

(20)
(21)

J}:f



opposite sign ancg in the place ofa. The analysis thus
follows easily. In particular when conditioril is false and
B2 is true or viceversa then the cost functiahsand.J; are

constant with respect tp.

We can collect the information gmin the following way:
eqg <1<gq
it decreases fo.% < p< i thenitincreases fof < p <

1+q
cases:
1
1+1q _ 1+1q
l-t-q+ - 1+q‘
1+q+ <1
S|mpl|fy|ng we obtaln the three casesiqgt > 1,¢ ¢t =1

1

|
\»—lwh—lw\»—l
Q
2
o

\»—lt\')\»—‘wh—t

and ¢~ ¢ < 1. In the first case we have that the optima
|, in the second case the

values of J; are forp € [0, 73+
optimal values of/; are forp € [0, 1+1q+ [U]= 1+q,, 1], andin
the third case the optimal values &f are forp € [1+ -, 1],
e ¢~ < ¢t < 1thenJ; is constant for0 < p < ﬁ
then it mcreases 1‘011%+ <p< 1+ — and then it is again
constant for—— < p < 1. The optimal values of/; are

1+ -
forp e [1+q_ J1.
o1 < qg <gq < 1+1q+
then it decreases fi o
constant forlJr —<p g 1
The optimal values of/; are forp € [0, ﬁ].
Analogously for.J; we have the following cases:
e g < 1 —1 < ¢* then J, is constant for) < p < 1+q+

then it decreases fof'*+ < p < pthen itincreases fop <
p < —— and then it is again constant fqr— <p<lL.
We dlstlngwsh three cases:
p_ 1+q+ > 1+q _pv

1t d
p 1+q+ 1+q7 p an
p_1++<1+7_ﬁ'
Slmphfylng we obtam + -+ 1+q+ < 2p, 1+q* + 1+q+ =
2p and —— 1+q
optimal values ot]Z are forp € [0, Trq —1],
the optimal values of/; are forp € [O, T A [u ]1+q, ,1],
and in the third case the optimal vaIuesQf are forp €

[1+q*’1]’
eqg  <g¢g"<;—1lthenJyis constant fol0 <p <

then it mcreases fog—+ <p<

1+ TqT
and then it is again

are

1+7

forp e [Hq, , 1].

o % —1<q <gqtthenlJ,is constant for) < p <
then it decreases foif—+ <p<
constant for

1+ TqT
1+ — and then it is again

< p < 1. The optimal values of/, are

1+7

q+ > 2p. In the first case we have that the
in the second case

for p € [0, ).

D. Optimal choices for Example 1

Notice that, in this case, the velocityp) is constant for
p < o. Hence ifI"' =T, < 'y, i.€. the parametet is
involved, then all solutions produce the same velocity thus
the same costd; and Js.
It remain to discuss the other case whére- T'yy < T

and then it is again constant forWe distinguish thre@nd only the parameter matters. We get

AL (2p-1r*(2-T)

op  (1-pIN(AQ-(1-pl)
thus the sign is determined by the tel?p — 1) which is
negative forp < I and positive forp > 1. We obtain the

game conclusions as in the previous subsection.

VI. CONCLUSIONS

We considered a macroscopic model for packets flow
on a telecommunication network obtained by looking at
intermediate time scale.

After the definition of solutions to Riemann problems at
nodes by a routing algorithm, we introduced some functions
measuring the average velocity of packets on the network.
For a simple network, we optimized the choice of parameters
involved in the solutions of Riemann problems to maximize
such performance functions.
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