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Abstract: This paper deals with the control of processes that present different dynamic 
responses for equal increments and decrements of its manipulate variable, showing a non 
symmetric response. Being non-linear systems, instead of using non linear general 
methods directly, the paper explores two alternative formulations based on an MPC 
approach that take advantage of its structure. An application example is provided showing 
the behaviour of the proposed methods. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
There are many processes in which, when a positive 
change in the manipulated variable is performed, one 
obtains a dynamic response that is quite different, 
either in shape or magnitude, to the one that can be 
obtained with a similar, but opposite change in the 
same manipulated variable (Fig.1). 
 
We will denote these kind of processes as 
asymmetric. Examples of them can be found in 
several processes due, for instance, to different 
heating/cooling systems  in chemical reactors. Other 
examples include the relation between the gas phase 
concentration and the pressure in a flash tank, or the 
one between head temperature and reflux flow in a 
distillation column. Clearly, they are non-linear and, 
as such, they pose a challenging problem to the 
control engineer. If tuned according to the “slow” 
response, they will present oscillations and 
overshoots in some operating conditions and if 
tuned according to the “fast” response, the closed 
loop will be also very slow in other cases.  
 
The answer is, of course, to take into account the 
non-linear characteristic of the process and to design 
a controller applying general methods for this type 
of systems. Nevertheless, one can ask himself if it is 
possible to gain advantage of the special structure of 
the system in order to obtain easier solutions, either 
in terms of modeling or in the controller. 
 

A control technique that has gained wide acceptance 
in industry is model predictive control (MPC). As it 
is well known, it is based in the use of an internal 
model for computing predictions of the model 
responses, over a given time horizon, as functions of 
the present and future values of the manipulated 
variables (Fig. 2). 
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Fig. 1 Typical response of an asymmetric process to 
positive and negative steps inputs  
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Fig. 2 MBPC strategy 



     

The manipulated variables are chosen by 
minimization of a cost function of the quadratic 
errors between the output predictions and a desired 
internal reference, under the constraint imposed by 
the model prediction equations. Usually, other 
additional constraints are included on the range and 
speed of the manipulated inputs, as well as on the 
admissible range of the outputs, and, perhaps, some 
others in order to guarantee some stability properties.  
 
If the internal model is linear, than the solution is 
obtained solving a QP optimization problem every 
sampling time. If not, the solution of a NLP problem 
is usually required, which increased considerably the 
complexity and computation time of the controller. 
In the literature, very few contributions can be found 
devoted specifically to this topic. Previous 
contributions to the mentioned problem appear for 
instance in (Doyle et al., 1995) and (Camacho and 
Bordons, 2000) but only from the point of view of 
general non-linear systems. In (Tan et al., 1998) the 
use of PID controller has focused on the control of 
processes with severe asymmetry where an automatic 
tuning procedure for gain-scheduled is described. 

 
This paper follows the non-linear MPC approach, 
but, at the same time, tries to re-formulate the model 
and the solution, in such way that, and this is the 
main contribution of the paper, for this particular 
kind of problems, an alternative and efficient 
formulation is obtained. The main point of the 
proposed method is the direct use of the linear 
models that could represent each of the two 
asymmetric dynamics of the process, instead of a 
more complex, perhaps first principles, non-linear 
model that could explain the whole system behavior, 
or the use of multiple linear models characteristic of 
other approaches. Using this internal model, two 
optimization algorithms are proposed that exploit its 
structure. 
 
The paper is organized as follows: after the 
introduction, section II describes the internal model 
of the controller, then section III gives the first 
algorithm that includes a non-linear constraint. 
Section IV describes an alternative that leads to a 
mix integer algorithm. Finally, section V provides an 
application example showing the advantages of the 
proposed approach. 
 

 
2. INTERNAL PROCESS MODEL 

 
The use of linear models or a combination of them 
for representing a non-linear process is always an 
attractive approach because it leads very often to less 
complex controllers. In the so-called multi-model 
representation, a collection of linear models, each of 
which describing an operating point, are combined 
according to some fuzzy rules. The control action is 
computed for each of the models and the actual 
control applied to the process is a combination of the 
control actions computed from the different models. 

Existing methods can differ in implementation 
details. One of the main problems of this approach is 
how to establish the partitions between the different 
operating regimes.  
In our case, the nature of the problem is a different 
one, where the source of non-linearity is not the 
operating point but the direction of the changes in the 
manipulated input. It is assumed that the system 
responses to both, positive and negative inputs, can 
be characterized by discrete transfer functions that 
will be denoted as G+(q-1) and G-(q-1) respectively, as 
in Fig.1.  
The key modeling idea for combining both models is 
depicted in Fig. 3, where the discrete control signal 
u(t) being applied to a process can always be 
considered as the sum of two sequences u+(t) and u-

(t), that have only increasing or decreasing changes 
correspondingly.  
 
Every positive or negative change in u(t) at a 
sampling time, is translated into the same change in 
u+(t) or u-(t) with the condition that they can not take 
place simultaneously. In this way, the moves in the 
control signal can be written as: 
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Now the model output can be formulated as: 
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where v(t) represents a non-stationary stochastic 
disturbance, or alternatively as: 
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where ∆ = 1–q-1, A, B+, B-, T are polynomials in the 
backward operator q-1, ξ(t) is a zero-mean white 
noise signal and u+, u- are constrained by (1). 
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Fig. 3 Signal u(t) decomposed as u+(t) and u-(t) 



     

3. MPC CONTROLLER 
 
Model (3), even if constrained by (1), has a nice 
structure that allows us to formulate closed 
expressions for the predictions of the process 
outputs. Taking into account that (1) refers only to 
the inputs,  we can apply the superposition principle 
with our model (3) and develop prediction equations 
in the usual way in linear MPC. 
Future values of the output at times t+j, (j=1,…,N2 
sampling periods) can be considered as the sum of 
two terms: the so called free and forced responses: 
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where the free response corresponds to: 
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and u+

f and u-
f can be computed according to: 
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so they are known variables at time t. Then, the 
predictions are obtained using the usual procedures, 
either based on filters or in Diophantic equations. As 
they are well known, they will not be repeated here. 
See for instance (Clarke, 1987).  
On the other hand, the forced response can be 
computed using: 
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(7) 
with gj being the step response coefficients of each 
transfer functions and 
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Once output predictions are available, the optimal 
control actions of our MPC controller can be 
obtained as the ones that minimize a cost function (9) 
of the squared errors between these predictions and a 
desired set point, including a penalty on the control 
moves, along a given time horizon: 
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Notice that (1) allow us to write the equivalent 
problem: 
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where we take advantage of the cost function 
structure that allows different weighting of the 
positive and negative moves. 
Defining the matrices: 
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and the vectors: 
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it is possible to reformulate I(t) as a quadratic 
function that the controller solves: 
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and the constraints (1) every sampling time. Due to 
constraint 
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a non-linear programming problem with 2Nu decision 
variables, a quadratic cost function and the linear 
constraints (8) has to be solved. Notice that adding 
additional constraints on the manipulated and 
controlled variables, or on their speed of change, this 
assertion does not modify. 
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where Ux, Dx, Lx, refers to the low and upper limits of 
these variables. 
As such, it must be solved with an appropriate NLP 
solver. The fact that the cost function, with adequate 
values of β, is convex and the most of the equations 
are linear, can help in finding the optimal solution, 
but there is no way to avoid the non-convex 
constraint (22). 
 

 
4. A HYBRID PREDICTIVE CONTROL 

ALTERNATIVE 
 
Because of this difficulty, an alternative solution to 
the problem described by (1), (18), (23)-(25) is 
proposed, in the form of a hybrid MPC problem. 
With this purpose, we have introduced Nu new binary 
variables zj,  j = 1,…, Nu-1. It is not difficult to 
realize that the set of constraints (1) is equivalent to 
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where D is a large positive number and the variable 
zj has 0/1 value. Notice that zj =1 means that a 
positive change will be implemented at time instant 
t+j and zj = 0 means that a negative change will be 
the one implemented at that time instant. 
The interest of substituting the set of constraints (1) 
by (26) is that, even if new binary variables zj are 
introduced, the set (26) is a linear one, eliminating 
the non-convex equations (22), which facilitates the 
finding of the optimal control moves. 
Now, the associated controller optimization problem 
can be formulated as an MIQP problem considering 
the cost index (18), the definitions (19)-(21) and the 
constraints (26). The optimization problem is solved 
every sampling period, for which efficient algorithms 
as Branch & Bound can be found. 

 
5. APPLICATION EXAMPLE 

 
In order to test the proposed method, an asymmetric 
process like the one depicted in Fig. 4 was 
considered. The two dynamics have been identified 
and the corresponding transfer functions are given 
by: 
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with the step responses like the ones shown in Fig. 5 
and 6. 

 
Fig. 5. Step response of G+(s) 

 
Fig. 6. Step response of G-(s) 
 
The proposed hybrid controller was applied to this 
asymmetric process and a series of experiments were 
performed.  
The controller had the following parameters: N1 = 1, 
N2 = 15, Nu = 2, and, initially, the same control 
weights β1 = 0.1, β2 = 0.1, were applied to each 
positive or negative movements of the control 
variable u. The experiments consist of several step 
changes in the set point of the controller. Fig. 7 
shows the process response and the set point in the 
lower graph as well as the control signal in the upper 
one. As we can see it behaves very well following 
the reference and with sensible control efforts. 
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Fig. 4 Asymmetric process of our example 
 



     

 
Fig. 7. Closed loop response of the asymmetric 

process to several step changes in the set point. 
Upper graph: control signal. Lower graph: set 
point and process output. 

 
A more symmetric process response can be obtained 
weighting the control moves differently. For 
instance, with β1 = 0.1, β2 = 10, it is possible to 
obtain the response of Fig. 8. 
Additional constraints in both inputs and outputs can 
be added easily. Fig. 9 and 10 show responses of the 
process when the control signal was constraint to be 
in the range [-1, 0.7] (Fig. 9.) and the process output 
was constraint also to be in the range  [-1, 1] (Fig. 
10). Notice that the set point is outside this range. 
In order to test the advantages of the proposed 
controller, it was compared with a linear MPC using 
a fix internal model. Fig. 11 shows the case where 
the internal model is given by G+(s) with the same 
tuning parameters as in the hybrid controller. As we 
can see, the response is very poor, with high control 
moves and oscillatory process output. This response 
can be improved by tuning of the control weights, 
compromising between the positive and negative 
responses. For instance, with β = 5, it is possible to 
obtain the responses of Fig. 12, which is still not very 
good. 
 

 
Fig. 8. Closed loop response of the asymmetric 

process to several step changes in the set point 
with different weights. Upper graph: control 
signal. Lower graph: set point and process output. 

 
 

 
Fig. 9. Closed loop response of the asymmetric 

process to several step changes in the set point. 
Limits on u. Upper graph: control signal. Lower 
graph: set point and process output. 

 
In the same way, Fig. 13 shows the case where the 
internal model is given by G-(s) with the same tuning 
parameters as in the hybrid controller. Similar 
conclusions can be obtained. Moreover the 
computation time for the whole experiment is only a 
bit smaller (0.313 seconds) than the case of the 
hybrid control (0.344 seconds). The both experiments 
were computed in a Pentium 2.53 GHz and 524 kB 
RAM. 
As a final test, we compared the hybrid and the non-
linear MPC model. The responses were very similar 
to the ones of Fig. 7, but the computation time was 
almost five times faster in the case of the hybrid 
controller and moreover the guarantee of optimality 
is given by the fact that the hybrid problem is 
convex. 
For save of simplicity, no terminal penalty term has 
been added to the cost functions but it could be easily 
included in order to stabilize the closed system. 
 
 

 
Fig. 10.  Closed loop response of the asymmetric 

process to several step changes in the set point. 
Limits on u and y. Upper graph: control signal. 
Lower graph: set point and process output. 

 



     

 
Fig. 11. Closed loop response of the asymmetric 

process to several step changes in the set point. 
Internal model G+. Upper graph: control signal. 
Lower graph: set point and process output. 

 

 
Fig. 12. Closed loop response of the asymmetric 

process to several step changes in the set point. 
Internal model G+ and β = 5. Upper graph: 
control signal. Lower graph: set point and process 
output. 

 

Fig. 13. Closed loop response of the asymmetric 
process to several step changes in the set point. 
Internal model G- , β = 0.1. Upper graph: control 
signal. Lower graph: set point and process output. 

 

 

 
6. CONCLUSIONS 

 
In this paper two alternative formulations for a MPC 
algorithm to deal with asymmetrical processes are 
presented instead of using a full non linear model 
strategy. Both algorithms take advantage of the use 
of two linear internal models and a quadratic cost 
function in spite of the non linearity of the process. 
The first proposed method involves NLP because of 
the constraints  and the second one has the form of a 
hybrid MPC problem with only linear constraints , 
some of them including binary variables, leading to a 
MIQP problem. 
Simulations using an example of a process with 
severe asymmetry were performed. Comparing with 
a linear MPC using a fix internal model, the new 
controllers show a better performance and an 
important advantage rais es with the hybrid one where 
the computation time is similar to a classic linear 
MPC. 
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